- •Теоретические основы теплотехники
- •1. Перечислить основные параметры, которыми характеризуется состояние рабочего тела
- •2. Объяснить, что такое идеальный газ
- •3. Перечислить основные законы идеального газа
- •4. Объяснить что такое теплоемкость
- •5. Дать определения внутренней энергии и энтальпии газа
- •6. Назовите первый закон термодинамики
- •7. Перечислить основные термодинамические процессы
- •Политропный процесс
- •8. Объяснить, что такое обратимый и необратимый термодинамический процесс
- •9. Изобразить график и охарактеризовать изобарный процесс Изобарный процесс
- •10. Изобразить график и охарактеризовать изохорный процесс Изохорный процесс
- •11. Изобразить график и охарактеризовать изотермический процесс Изотермический процесс
- •12. Изобразить график и охарактеризовать адиабатный процесс Адиабатный процесс
- •13. Дать определение кругового процесса или цикла
- •14. Написать формулу для определения термодинамического коэффициента полезного действия цикла
- •15. Объяснить, что такое прямой и обратный цикл Карно
- •16. Перечислить основные термодинамические свойства воды и пара
- •17. Изобразить графически цикл Ренкина
- •18. Объяснить, что такое истечении газов
- •19. Объяснить, что такое дросселирование газов
- •21. Объяснить понятия: температурное поле, градиент температуры и тепловой поток
- •22. Теплопроводность при стационарном тепловом режиме
- •23. Написать формулу теплопроводности плоской стенки (трубы). Изобразить графически процесс передачи тепла через плоскую стенку трубы
- •9.4.3.Теплопроводность через плоскую стенку при граничных условиях первого рода
- •24. Перечислить виды движения теплоносителя
- •25. Объяснить, что такое конвективный теплообмен
- •26. Объяснить, чем отличается теплопередача при свободном и вынужденном движении теплоносителя
- •27. Объяснить, чем отличается теплоотдача при движении среды в трубах, теплоотдача при внешнем обтекании труб
- •28. Описать связь конвективного теплообмена с гидравлическим
- •29. Объяснить, как изменяется теплоотдача при изменении агрегатного состояния вещества
- •30. Объяснить, чем отличается теплоотдача при конденсации пара от теплоотдачи при кипении жидкости
- •31. Объяснить, что такое массообмен
- •32. Объяснить, что такое лучистый теплообмен
- •33. Перечислить виды лучистых потоков
- •34. Назвать основные законы теплового излучения
- •35. Описать основные законы теплового излучения
- •36. Объяснить, чем отличается теплопередача через плоскую стенку от теплопередачи через цилиндрическую стенку
- •37. Описать процесс теплопередачи в теплообменных аппаратах
- •38. Объяснить, что такое сложный теплообмен
- •39. Назвать основные принципы расчета теплообменных аппаратов Основы гидравлики
- •2. Назвать основные физические свойства жидкости
- •3. Объяснить, что такое гидравлический удар
- •4. Объяснить, что такое гидравлическое сопротивление, написать формулу для определения гидравлического сопротивления, объяснить, от чего зависит величина гадравлического сопротивления
- •5. Основные сведения о насосах, применяемых в теплотехнике
- •6. Нарисовать схему устройства насоса
- •7. Описать принцип работы насоса
- •8. Понятие о производительности, развиваемом напоре и давление на выходе из насоса
- •9. Назвать примеры, влияющие на производительность насоса
- •10. Перечислить основные рабочие параметры насоса
- •Здесь выражается в кг/л, – л/с, – м, – кВт. Часть потребляемой энергии, которая затрачивается на преодоление различных видов сопротивлений в пределах насоса, описывается выражением 1–h;
- •11. Объяснить, как производится регулирование и совместная работа насосов
- •12. Объяснить, что такое допустимая высота всасывания в чем заключается явление кавитации
- •13. Назвать силы, действующие на насос и способы их уравновешивания
- •14. Объяснить, что такое нестационарные режимы работы
- •15. Объяснить, что такое «срыв» «запаривание» насоса
- •16. Описать конструкцию и принцип действия эжекторной установки
- •17. Описать конструкцию и принцип действия вакуумных насосов
- •18. Назвать факторы, влияющие на конструкцию и работу насоса Физические факторы, влияющие на работу насосов
- •1. Кавитация
- •2. Завихрения
- •3. Вибрация
- •4. Шумы
- •5. Осевые и радиальные нагрузки
- •19. Перечислить критерии выбора насоса для эксплуатации
- •Вентиляционные установки
- •1. Перечислить виды вентиляционных систем
- •Типы вентиляционных систем[править | править вики-текст]
- •Типы систем по способу побуждения движения воздуха[править | править вики-текст] Естественная вентиляция[править | править вики-текст]
- •Механическая вентиляция[править | править вики-текст]
- •2. Описать устройство вентилятора
- •3. Дать классификацию основных типов вентиляторов по конструктивному исполнению
- •Центробежные (радиальные) вентиляторы[править | править вики-текст]
- •Диаметральные (тангенциальные) вентиляторы[править | править вики-текст]
- •Общая электротехника
- •1. Назвать основные законы цепей постоянного тока и записать их формулы
- •1.3. Основные законы цепей постоянного тока
- •Закон Ома для участка цепи
- •Закон Ома для всей цепи
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •2. Объяснить, что такое силы Ампера, Лоренцо
- •3. Сформулировать закон Ампера
- •5. Объяснить, что такое активная, реактивная и полная мощность Активная мощность — среднее за период значение мгновенной мощности переменного тока
- •Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения u на её зажимах
- •Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока
- •7. Объяснить, что такое фазное и линейное напряжение
- •Описать устройство и принцип действия асинхронного двигателя
- •9. Описать устройство и принци действия электрических двигателей постоянного тока
- •10. Описать в общем устройство электропривода
- •11. Назвать назначение и описать принцип действия трансформаторов
- •Контрольно-измерительные приборы и автоматическое регулирование тепловых процессов
- •1. Объяснить принцип измерения температуры, давления, уровня, расхода
- •Магнитные
- •Емкостные
- •Ртутные
- •Пьезоэлектрические
- •Пьезорезонансные
- •Резистивные
- •2. Описать устройство датчиков измерения температуры, давления, уровня, расхода
- •3. Объяснить, что такое вторичные приборы
- •4. Назвать основные типы вторичных приборов
- •5. Дать определение терминам «Класс точности прибора» и «Погрешность измерения»
- •Дозиметрия и защита от ионизирующего излучения
- •2. Описать биологическое воздействие ионизирующего излучения
- •Единицы измерения
- •Механизмы биологического воздействия
- •Гигиеническое нормирование ионизирующих излучений
- •3. Объяснить, каким образом осуществляется защита от воздействия радиоактивных веществ и ионизирующего излучения
- •4. Назвать основные методы регистрации ионизирующего излучения
- •3. Цитогенетические:
- •2) Источника электрического питания
- •Перечислить основные приборы радиационного контроля
- •Ядерная физика. Основы физики реакторов
- •1. Перечислить и охарактеризовать основные модели строения атома
- •2. Объяснить, что такое а. Е. М.
- •3. Описать строение атома
- •4. Объяснить, что такое энергетический спектр атома
- •5. Объяснить, как происходит превращение атомных ядер
- •6. Объяснить, что такое ядерные силы и охарактеризовать их
- •7. Объяснить, что такое дефект массы
- •8. Объяснить, что такое устойчивость ядер
- •9. Объяснить, что такое радиоактивность
- •10. Объяснить, что такое искусственная радиоактивность
- •11. Перечислить основные типы ядерных реакций и охарактеризовать их
- •12. Описать, как осуществляется цепная реакция деления ядер Цепная реакция деления ядер урана
- •13. Перечислить основные типы ядерных реакторов
- •15. Написать формулу четырех сомножителей, реактивности, периода для реактора, работающего на постоянном уровне мощности
- •16. Объяснить, что такое коэффициент размножения
- •17 Объяснить, что такое реактивность
- •18. Объяснить, период реактора
- •21. Объяснить, что такое температурный и мощностной эффект реактивності
- •Общие сведения
- •Накопление продуктов деления
- •Глубина выгорания]
- •Теоретические основы химии воды
- •2. Назвать факторы, влияющие на растворимость твердых веществ
- •3. Назвать факторы, влияющие на растворимость газов в воде
- •6. Объяснить, что такое электролитическая диссоциация
- •Диссоциация в растворах
- •Диссоциация при плавлении
- •7. Объяснить, что такое водородный показатель
- •8. Объяснить, что такое гидролиз растворов
- •Механический этап[править | править вики-текст]
- •Физико-химический этап[править | править вики-текст]
- •Механизм ионного обмена
- •Теплообменное оборудование аэс
- •1. Назвать назначение, описать классификацию теплообменных аппаратов
- •2. Объяснить классификацию теплообменных аппаратов
- •3. Перечислить требовании, предъявляемые к теплообменному оборудованию аэс
- •Назвать основные конструкционные элементы, принцип действия теплообменников
- •Трубопроводы и оборудование аэс
- •1. Назвать назначение трубопроводов аэ
- •2. Перечислить признаки, по которым различаются трубопроводы аэс
- •3. Назвать назначение энергетической арматуры
- •По функциональному назначению
- •5. Назвать основные типы арматуры, применяемой на аэс
- •6. Перечислить требования к арматуре, применяемой на аэс
- •7. Назвать назначение, описать конструкцию, принцип действия запорной, дроссельной-регулирующей, защитно-предохранительной арматуры
- •Паровые турбины
- •Основные технические характеристики паровых турбин turbopar:
5. Объяснить, как происходит превращение атомных ядер
РАДИОАКТИВНЫЕ ПРЕВРАЩЕНИЯ
Э. Резенфорд вместе с с английским радиохимиком Ф. Содди доказал, что радиоактивность сопровождается самопроизвольным превращением одного химического элемента в другой. Причем в результате радиоактивного излучения изменения претерпевают ядра атомовхимических элементов.
ОБОЗНАЧЕНИЕ ЯДРА АТОМА
ИЗОТОПЫ
Среди радиоактивных элементов были обнаружены элементы, неразличимые химически, но разные по массе. Эти группы элементов были названы "изотопами"("занимающими одно место в табл. Менделеева") . Ядра атомов изотопов одного и того же химического элемента различаются числом нейтронов. В настоящее время установлено, что все химические элементы имеют изотопы. В природе все без исключения химические элементы состоят из смеси нескольких изотопов, поэтому в таблице Менделеева атомные массы выражены дробными числами. Изотопы даже нерадиоактивных элементов могут быть радиоактивны.
АЛЬФА - РАСПАД
-альфа-частица (ядро атома гелия) - характерен для радиоактивных элементов с порядковым номером больше 83 .- обязательно выполняется закон сохранения массового и зарядового числа. - часто сопровождается гамма-излучением.
Реакция альфа-распада:
При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к её началу, чем исходный.
Физический смысл реакции: в результате вылета альфа-частицы заряд ядра уменьшается на 2 элементарных заряда и образуется новый химический элемент.
Правило смещения:
При бета-распаде одного химического элемента образуется другой элемент, который расположен в таблице Менделеева в следующей клетке за исходным (на одну клетку ближе к концу таблицы).
БЕТА - РАСПАД
- бета-частица (электрон). - часто сопровождается гамма-излучением. - может сопровождаться образованием антинейтрино ( легких электрически нейтральных частиц, обладающих большой проникающей способностью). - обяэательно должен выполняться закон сохранения массового и зарядового числа.
Реакция бета-распада:
Физический смысл реакции: нейтрон в ядре атома может превращаться в протон, электрон и антинейтрино, в результате ядро излучает электрон.
Правило смещения:
6. Объяснить, что такое ядерные силы и охарактеризовать их
Ядерные силы силы — удерживающие нуклоны (протоны и нейтроны) в ядре. Они действуют только на расстояниях не более 10 -13 см и достигают величины, в 100-1000 раз превышающей силу взаимодействия электрических зарядов.
Ядерные силы не зависят от заряда нуклонов. Они обусловлены сильным взаимодействием.
Сведения о ядерный силах были получены из данных о рассеянии нуклонов на нуклонах, а также из исследований свойств атомных ядер (связанных состояний нуклонов). Само существование атомных ядер заставляет предположить, что в ядерных силах имеется существенное притяжение, которое и обеспечивает энергию связи нуклонов в ядрах порядка нескольких МэВ на нуклон. Кроме того, с увеличением числа нуклонов A в ядре энергия связина нуклон остается примерно постоянной, а объем ядра растет пропорционально A. Про системы с такими свойствами говорят, что в них имеется насыщение сил, и потому ядерные силы называют насыщающими. Они приводят к возможности существования ядерной материи (Нейтронные звезды), плотность энергии которой не зависит от полного числа нуклонов и составляет примерно 16 МэВ на нуклон (если пренебречь электромагнитными (кулоновским) и гравитационными взаимодействиями). В общем случае можно представить себе, что ядерные силы – это притяжение только между нуклонами — ближайшими соседями, поэтому и энергия связи ядра пропорциональна числу нуклонов в ядре.
