Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Statistiki_shpory.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
704.56 Кб
Скачать

29 Приемы сглаживания и аналитического выравнивания динамических рядов.

Первая задача, которая возникает при анализе рядов динамики, заключается в выявлении и описании основной тенденции развития изучаемого явления (тренда).

Трендом называется плавное и устойчивое изменение уровней явления во времени, свободное от случайных колебаний.

Изучение тренда включает в себя два этапа:

1. Проверка ряда на наличие тренда;

2. Выравнивание ряда динамики и непосредственное выделение тренда.

Проверка ряда на наличие тренда проводится разными методами, самым простым из которых является метод средних. Суть его заключается в следующем: изучаемый ряд динамики разбивается на несколько интервалов (чаще всего на два), для каждого из которых определяется средняя величина - y и y . Выдвигается гипотеза о существенном различии средних. Если выдвинутая гипотеза принимается, то признается наличие тренда.

Для непосредственного выявления тренда используют следующие методы:

метод укрупнения интервалов;

метод скользящей средней;

метод аналитического выравнивания.

Все перечисленные методы относятся к группе методов сглаживания, предполагающих наличие в исходном ряду динамики только одной компоненты – тренда.

Метод укрупнения интервалов является одним из наиболее простых методов непосредственного выявления основной тенденции. При использовании этого метода ряд динамики, состоящий из мелких интервалов, заменяется рядом, состоящим из более крупных интервалов. Так как на каждый уровень исходного ряда влияют факторы, вызывающие их разнонаправленное изменение, то это мешает видеть основную тенденцию.

Метод скользящей средней предполагает замену исходный ряда теоретическим, уровни которого рассчитываются по формуле скользящей средней. Скользящая средняя относится к подвижным динамическим средним, вычисляемым по ряду при последовательном перемещении на один интервал

Метод аналитического выравнивания

Выявление общей тенденции развития уровней динамического ряда может быть проведено с применением различных приемов аналитического выравнивания, которое наиболее часто осуществляется следующими способами: во-первых, выравниванием по прямой линии; во- вторых, по показательной кривой; в-третьих, по гиперболе; в-четвертых, по параболе второго порядка.

При выравнивании по прямой линии закономерно изменяющиеся уровни динамического ряда рассчитываются как функция времени, выражающаяся уравнением:

где – выровненные значения уровней ряда; t – периоды или моменты времени, к которым относятся уровни; а, в – параметры уравнения (искомой прямой).

Для расчета параметров уравнения прямой линии рекомендуется применять способ наименьших квадратов, в основе которого лежит следующие требование: сумма квадратов отклонений фактических уровней ряда (У) от выровненных и лежащих на искомой линии теоретических уровней должна иметь минимальное значение, т.е.

Этому требованию удовлетворяет система нормальных уравнений, которые в соответствии с обозначениями формулы (16) могут быть записаны следующим образом

где У – значения фактических уровней ряда динамики; t – порядковые номера периодов или моментов времени; n – число фактических уровней динамического ряда.

Приведенную систему нормальных уравнений можно упростить, если срединный уровень ряда условно принять на начальный. В этом случае Σt=0, а система уравнений примет следующий вид:

откуда параметры а, в выразят так:

Определив параметры а, в, легко найти выравненные значения уровней и изобразить их графически в виде теоретической прямой линии.

Параметр a в линейной трендовой модели обычно интерпретации не имеет, но иногда его рассматривают как обобщенный начальный уровень ряда.

Параметр b в трендовом уравнении называется коэффициентом регрессии. Он определяет направление развития явления: при b >0 – уровни ряда динамики равномерно возрастают, при b <0 – равномерно снижаются. Коэффициент регрессии показывает, насколько в среднем изменится уровень ряда при изменении времени на единицу. Это означает, что параметр b можно рассматривать как средний абсолютный прирост с учетом тенденции к равномерному росту (росту в арифметической прогрессии).

Полученные при анализе динамических рядов характеристики используются для получения статистических прогнозов, под которыми I II III IV понимаются статистические оценки состояния явления в будущих периодах.

Метод прогнозирования на основе среднего абсолютного прироста Δ применяется в том случае, если уровни изменяются равномерно (линейно).

Так, если фактические уровни динамического ряда характеризуются более-менее стабильными (положительными или отрицательными) абсолютными приростами и на координатной диаграмме они равномерно отклоняются от теоретической прямой линии, то выравнивание уровней может проводиться по среднему абсолютному приросту, т.е.

где – выравниваемый искомый уровень; У0 – начальный (базисный) уровень; – средний абсолютный прирост уровней ряда; n – порядковый номер искомого (выравниваемого) уровня.

Прогнозирование по среднему коэффициенту роста K применяется, если общая тенденция характеризуется экспотенциальной кривой.

В тех случаях, когда изучаемый динамический ряд характеризуется более-менее стабильными повышающимися или снижающимися темпами роста, выравнивание уровней такого ряда можно проводить с помощью среднего коэффициента (темпа) роста:

где – выравниваемый искомый уровень;

У0 – начальный уровень ряда;

– средний коэффициент роста уровней;

n – порядковый номер выравниваемого уровня.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]