
- •1 Предмет и методы статистики.
- •1. Понятие о статистике. Предмет статистики.
- •2. Исходные понятия статистики.
- •3. Организации гос стат-ки.Важнейшие международные орган.И стат-ке службы.
- •4 Сущность стат-кого наблюдения
- •5 Осн. Формы, виды и способы проведения наблюдений.
- •6 Подготовка стат-кого наблюдения.
- •7 Ошибки статистического наблюдения и меры борьбы с ними
- •8 Понятие стат – кой сводки, и их виды.
- •9 Понятие и задачи группировок. Виды.
- •10,Понятие о рядах распределения. Виды рядов распред
- •11. Статистические таблицы, их виды и правила построения. Основные правила построения.
- •12,Понятие о статистическом показатели их виды
- •13. Содержание, виды и значения обсолютных статистич показ
- •14,Сущность и значение относительных статистических показ. Их виды
- •15.Роль и значение графического способа изображения статистических данных. Элементы статистического графика и правила его построения
- •15.Роль и значение крафического способа изображения статистических данных. Элементы статистического графика и правила его построения
- •16,Способы графического изображения динамики, структкра и взаимосвязь явлений. Графики изучения сезонных колебаний.
- •Средняя величина. Ее сущность и определение
- •18. Основные виды и формы средних величин, область их применения
- •19. Средняя арифметическая величина и ее основные св-ва
- •20. Структурные средние
- •22. Абсолютные и относительные харак-к измерения вариации. Основные матем. Св-ва дисперсии.
- •Виды дисперсий. Правило сложения дисперсий. Статист. Коэффициенты измерения связи
- •24.Понятие о выборочном наблюдении.
- •25. Генеральная и выборочная совокупности и их обобщающие характеристики. Способы отбора единиц из генеральной совокупности.
- •26. Ошибки выборочного наблюдения.
- •27. Понятие о рядах динамики. Виды рядов динамики. Правила построения рядов динамики.
- •28. Показатели ряда динамики и методы их исчисления.
- •29 Приемы сглаживания и аналитического выравнивания динамических рядов.
- •30 Понятие об индексах. Классификация индексов.
- •31. Индивидуальные и общие агрегатные индексы. Принципы их построения.
- •32.Средние индексы: сред. Арифметические и гармонические индексы.
- •33.Виды и формы взаимосвязей, изучаемых в статистике.
- •34.Статистические методы изучения связей.
- •35. Сущность и виды корреляций. Основные формы корр-й связи между признаками.
- •36. Показатели тесноты корр-х связей:
- •37. Социально-экономическая статистика
- •38 Общие и специальные методы социально-экономической статистики
- •39. Задачи сэс в условиях рыночной экономики
- •40. Отраслевая классификация рыночной экономики
- •41.Разновидности институционных единиц, их классификация по резидентскому статусу.
- •42.Понятие основной, вспомогательной и побочной деятельности производственных единиц.
- •43.Сущность и признаки экономической территории страны
- •44. Секторная классификация экономики
- •45. Понятие и состав системы национальных счетов
- •46. Принципы построения счетов национальной экономики
- •47. Показатели валового выпуска товаров и услуг
- •48. Показатели промежуточного потребления товаров и услуг
- •49. Показатели валовой добавленной стоимости товаров и услуг и валового внутреннего продукта. Расчет ввп производственным методом
- •50. Изучение динамики вдс и ввп
- •51. Показатели образования первичных доходов. Расчет ввп распределительным методом
- •52.Показатели распределения первичных доходов.
- •53.Показатели вторичного распределения доходов.
- •54.Показатели использования доходов. Расчет ввп методом конечного использования.
- •55.Статистическая методология определения состава капиталообразования. Состав капитальных трансфертов.
- •56.Методология разработки счета операций с капиталом.
- •57.Общая характеристика и состав национального богатства.
- •58.Классификация и методы оценки основных фондов.
- •59 Показатели состояния и движения основных фондов
- •60 Показатели статистики текущих экономических операций с зарубежными странами . Показатели импорта и экспорта товаров и услуг
- •61 Показатели внешних операций с капиталом
- •62 Показатели численности, состава населения и его размещения
- •64.Показатели механического движения населения.
- •65 Сущность трудовых ресурсов. Основные категории и баланс трудовых ресурсов
- •66. Показатели занятости населения и безработицы
- •67. Понятие и критерии эффективности общественного производства. Система обобщающих показателей эффективности использования ресурсов.
- •68. Показатели эффективности использования живого труда
- •69.Показатели эффективности использования основных и оборотных фондов
- •70. Понятие и система показателей уровня жизни населения. Обобщающие показатели уровня жизни населения.
- •Ожидаемая продолжительности жизни при рождении;
- •Уровня образования;
- •Уровня производства валового национального дохода (внд) на душу населения.
- •71. Показатели доходов населения.
- •72. Показатели расходов населения и потребления
29 Приемы сглаживания и аналитического выравнивания динамических рядов.
Первая задача, которая возникает при анализе рядов динамики, заключается в выявлении и описании основной тенденции развития изучаемого явления (тренда).
Трендом называется плавное и устойчивое изменение уровней явления во времени, свободное от случайных колебаний.
Изучение тренда включает в себя два этапа:
1. Проверка ряда на наличие тренда;
2. Выравнивание ряда динамики и непосредственное выделение тренда.
Проверка ряда на наличие тренда проводится разными методами, самым простым из которых является метод средних. Суть его заключается в следующем: изучаемый ряд динамики разбивается на несколько интервалов (чаще всего на два), для каждого из которых определяется средняя величина - y и y . Выдвигается гипотеза о существенном различии средних. Если выдвинутая гипотеза принимается, то признается наличие тренда.
Для непосредственного выявления тренда используют следующие методы:
• метод укрупнения интервалов;
• метод скользящей средней;
• метод аналитического выравнивания.
Все перечисленные методы относятся к группе методов сглаживания, предполагающих наличие в исходном ряду динамики только одной компоненты – тренда.
Метод укрупнения интервалов является одним из наиболее простых методов непосредственного выявления основной тенденции. При использовании этого метода ряд динамики, состоящий из мелких интервалов, заменяется рядом, состоящим из более крупных интервалов. Так как на каждый уровень исходного ряда влияют факторы, вызывающие их разнонаправленное изменение, то это мешает видеть основную тенденцию.
Метод скользящей средней предполагает замену исходный ряда теоретическим, уровни которого рассчитываются по формуле скользящей средней. Скользящая средняя относится к подвижным динамическим средним, вычисляемым по ряду при последовательном перемещении на один интервал
Метод аналитического выравнивания
Выявление общей тенденции развития уровней динамического ряда может быть проведено с применением различных приемов аналитического выравнивания, которое наиболее часто осуществляется следующими способами: во-первых, выравниванием по прямой линии; во- вторых, по показательной кривой; в-третьих, по гиперболе; в-четвертых, по параболе второго порядка.
При
выравнивании
по
прямой
линии
закономерно
изменяющиеся
уровни
динамического
ряда
рассчитываются
как
функция
времени,
выражающаяся
уравнением:
где
– выровненные
значения
уровней
ряда;
t
– периоды
или
моменты
времени,
к
которым
относятся
уровни;
а,
в
–
параметры
уравнения
(искомой
прямой).
Для
расчета
параметров
уравнения
прямой
линии
рекомендуется
применять
способ
наименьших
квадратов,
в
основе
которого
лежит
следующие
требование:
сумма
квадратов
отклонений
фактических
уровней
ряда
(У)
от
выровненных
и
лежащих
на
искомой
линии
теоретических
уровней
должна
иметь
минимальное
значение,
т.е.
Этому
требованию
удовлетворяет
система
нормальных
уравнений,
которые
в
соответствии
с
обозначениями
формулы
(16) могут
быть
записаны
следующим
образом
где У – значения фактических уровней ряда динамики; t – порядковые номера периодов или моментов времени; n – число фактических уровней динамического ряда.
Приведенную
систему
нормальных
уравнений
можно
упростить,
если
срединный
уровень
ряда
условно
принять
на
начальный.
В
этом
случае
Σt=0,
а
система
уравнений
примет
следующий
вид:
откуда
параметры
а,
в
выразят
так:
Определив
параметры
а,
в,
легко
найти
выравненные
значения
уровней
и
изобразить
их
графически
в
виде
теоретической
прямой
линии.
Параметр a в линейной трендовой модели обычно интерпретации не имеет, но иногда его рассматривают как обобщенный начальный уровень ряда.
Параметр b в трендовом уравнении называется коэффициентом регрессии. Он определяет направление развития явления: при b >0 – уровни ряда динамики равномерно возрастают, при b <0 – равномерно снижаются. Коэффициент регрессии показывает, насколько в среднем изменится уровень ряда при изменении времени на единицу. Это означает, что параметр b можно рассматривать как средний абсолютный прирост с учетом тенденции к равномерному росту (росту в арифметической прогрессии).
Полученные при анализе динамических рядов характеристики используются для получения статистических прогнозов, под которыми I II III IV понимаются статистические оценки состояния явления в будущих периодах.
Метод прогнозирования на основе среднего абсолютного прироста Δ применяется в том случае, если уровни изменяются равномерно (линейно).
Так, если фактические уровни динамического ряда характеризуются более-менее стабильными (положительными или отрицательными) абсолютными приростами и на координатной диаграмме они равномерно отклоняются от теоретической прямой линии, то выравнивание уровней может проводиться по среднему абсолютному приросту, т.е.
где
– выравниваемый
искомый
уровень;
У0
– начальный
(базисный)
уровень;
– средний
абсолютный
прирост
уровней
ряда;
n
– порядковый
номер
искомого
(выравниваемого)
уровня.
Прогнозирование по среднему коэффициенту роста K применяется, если общая тенденция характеризуется экспотенциальной кривой.
В тех случаях, когда изучаемый динамический ряд характеризуется более-менее стабильными повышающимися или снижающимися темпами роста, выравнивание уровней такого ряда можно проводить с помощью среднего коэффициента (темпа) роста:
где – выравниваемый искомый уровень;
У0 – начальный уровень ряда;
– средний
коэффициент
роста
уровней;
n – порядковый номер выравниваемого уровня.