Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект Лекцій.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.81 Mб
Скачать

6.2.Регресійний аналіз.

Важливою характеристикою кореляційного аналізу є лінія регресії – емпірична в моделі аналітичного групування і теоретична в моделі регресійного аналізу.

Емпірична лінія регресії представлена груповими середніми результативної ознаки , кожна з яких належить до відповідного інтервалу значень групувального фактора (див. табл.6.2).

Теоретична лінія регресії описується певною функцією , яку називають рівнянням регресії, а Yтеоретичним рівнем результативності ознаки. На відміну від емпіричної, теоретична лінія регресії неперервна.

Залежно від характеру зв’язку статистика використовує різні за функціональним видом регресійні рівняння:

лінійні рівняння , коли із змінною х ознака у змінюється більш-менш рівномірно;

нелінійні рівняння, коли зміна взаємопов’язаних ознак відбувається нерівномірно (з прискоренням, уповільненням або напрям зв’язку змінюється), зокрема:

степенева

гіперболічна

параболічна

В практиці частіше застосовуються лінійні рівняння або приведені до лінійного виду. У лінійному рівнянні параметр b коефіцієнт регресії, який вказує, на скільки одиниць в середньому зміниться у зі зміною х на одиницю. Він має одиницю виміру результативної ознаки і розглядається як ефект впливу х на у.

Параметр a – вільний член рівняння регресії, тобто це значення У при х=0. Якщо х не набуває нульових значень, цей параметр має лише розрахункове значення.

Параметри рівняння регресії визначаються методом найменших квадратів, основна умова якого – мінімізація суми квадратів відхилень емпіричних значень y від теоретичних Y:

.

Математично доведено, що значення параметрів а та b, при яких мінімізується сума квадратів відхилень, визначається із системи нормальних рівнянь:

n∙a+b

a∙ b∙

Звідси:

,

Порядок обчислення параметрів лінійної регресії розглянемо на прикладі зв’язку між урожайністю зернових і кількістю внесених добрив (в центнерах діючої поживної речовини – д.р.). Взаємопов’язані ознаки та необхідні для розрахунку параметрів величини наведені в табл.6.2

Таблиця 6.2 – Матеріали до розрахунку параметрів лінійної регресії

Номер госпо-

дарства

Кількість внесених добрив,х

ц.д.р

Урожайність

зернових,у

ц/га

х∙у

х

Y

у - Y

(у –Y)

1

1,4

25

35,0

1,96

27,03

-2,03

4,12

2

2,0

33

66,0

4,00

33,29

-0,29

0,08

3

1,8

30

54,0

3,24

31,2

-1,2

1,44

4

1,3

28

36,4

1,69

26,0

2

4

5

1,2

26

31,2

1,44

24,95

1,05

1,10

6

1,1

23

25,3

1,21

23,91

-0,91

0,83

7

1,7

32

54,4

2,89

30,16

1,84

3,39

8

1,5

27

40,5

2,25

28,08

-1,08

1,17

9

1,6

29

46,4

2,56

29,12

-0,12

0,01

10

1,9

33

62,7

3,61

32,26

0,74

0,56

Разом

15,5

286

451,9

24,85

286

х

16,70

=15,5:10=1,55

=286:10=28,6

Користуючись цими величинами, визначаємо:

b= ц/га

a= 28,6-10,424∙1,55=12,443

Отже, рівняння регресії має вигляд:

у= 12,443+10,424х

Тобто, кожний центнер внесених добрив (в перерахунку на діючу поживну речовину) дає приріст урожайності в середньому 10,424 ц/га. Якщо добрива не вносити (х=0), то урожайність зернових не перевищить 12,443 ц/га.

Рівняння регресії відбиває закон зв'язку між х і у не для окремих елементів сукупності, а для сукупності в цілому. Закон, який абстрагує вплив інших факторів, виходить з принципу «за інших однакових умов».

Вплив інших окрім х факторів зумовлює відхилення емпіричних значень у від теоретичних у той чи інший бік. Відхилення (у – Y) називають залишками і позначають символом e. Залишки, як правило, менші за відхилення від середньої, тобто:

(у – Y) ≤ (у - ).

У нашому прикладі

,

де .

.

Відповідна загальна дисперсія врожайності:

у - .

Залишкова дисперсія:

.

Коефіцієнт регресії у невеликих за обсягом сукупностях схильний до випадкових коливань. Тому здійснюється перевірка його істотності за допомогою t – критерію (Стьюдента):

,

де b – коефіцієнт регресії;

– стандартна похибка.

Стандартна похибка коефіцієнта регресії залежить від варіації факторної ознаки , залишкової дисперсії і числа ступенів свободи k = n – m, де m – кількість параметрів рівняння регресії:

.

Для лінійної функції m = 2. За даними табл.6.2 маємо:

.

Звідси:

(ц/га),

а

,

що перевищує критичне значення t – критерію . Гіпотеза про випадковий характер коефіцієнта регресії відхиляється, а отже, з імовірністю 0,95 вплив кількості добрив на врожайність зернових визначається істотним.

Для коефіцієнта регресії визначаються також довірчі межі: . В нашому прикладі довірчі межі коефіцієнта регресії з імовірністю 0,95 (t = 2,45) становлять 10,424±2,45∙1,59.

Важливою характеристикою регресійної моделі є відносний ефект впливу фактора х на результат у – коефіцієнт еластичності:

,

який показує, на скільки процентів у середньому змінюється результативна ознака у зі зміною фактора х на 1%. За даними нашого розрахунку:

,

тобто збільшення кількості внесених добрив на 1% приріст урожайності зернових у середньому складає 0,565%.

На підставі рівняння регресії визначаються теоретичні значення Y, тобто значення результативної ознаки за умови впливу лише фактора х при незмінному рівні інших факторів. Так, для

х = 1,5 ц теоретичний рівень урожайності становить 28,08 ц/га (Y = 12,443+10,424∙1,5), що дещо відхиляється від емпіричного значення (27 ц/га).