- •Часть 1
- •Глава 1. Линейная алгебра. 4
- •Глава7 Дифференциальное исчисление функции 51
- •Глава 8. Приложения дифференциального исчисления функции одной переменной. 57
- •Глава 9. Интегральное исчисление. 75
- •Глава 10. Дифференциальное исчисление функций нескольких переменных 97
- •Глава 1. Линейная алгебра.
- •1. Матрицы. Действия над ними.
- •2. Определители, их свойства.
- •3. Обратная матрица.
- •4. Решение систем линейных уравнений с помощью обратной матрицы.
- •5. Метод Крамера.
- •6. Решение произвольных систем линейных уравнений методом Гаусса.
- •Глава 2. Элементы векторной алгебры.
- •1. Векторы. Линейные операции над ними.
- •2. Скалярное произведение векторов.
- •3. Векторное произведение векторов.
- •4. Смешанное произведение векторов.
- •Глава 3. Аналитическая геометрия.
- •1. Прямая на плоскости.
- •2. Уравнения плоскости.
- •3. Уравнения прямой в пространстве.
- •Глава 4. Кривые второго порядка.
- •1.Кривые второго порядка: эллипс, гипербола, парабола (определения, канонические уравнения).
- •2. Полярная система координат.
- •Глава 5. Комплексные числа.
- •1. Определение комплексного числа. (алгебраическая форма записи).
- •2. Тригонометрическая форма записи комплексного числа.
- •3. Действия с комплексными числами.
- •4. Возведение в степень и извлечение корня из комплексного числа.
- •Глава 6. Введение в математический анализ.
- •1. Предел последовательности. Основные понятия.
- •2. Предел функции. Односторонние пределы.
- •3. Основные теоремы о пределах.
- •4. Бесконечно малые функции и их свойства.
- •5. Сравнение бесконечно малых функций.
- •6. Замена на эквивалентную в пределе. Таблица эквивалентных величин.
- •7. Непрерывность функции в точке, на интервале. Основные теоремы о непрерывных функциях.
- •8. Точки разрыва и их классификация.
- •Глава7 Дифференциальное исчисление функции одной переменной.
- •1. Производная функции, ее геометрический и физический смысл.
- •2. Основные правила дифференцирования.
- •3. Производные основных элементарных функций.
- •4. Дифференциал функции.
- •Глава 8. Приложения дифференциального исчисления функции одной переменной.
- •1. Теоремы о дифференцируемых функциях.
- •2. Исследование функций с помощью производной.
- •3. Схема исследования функций
- •Глава 9. Интегральное исчисление.
- •1. Первообразная. Неопределенный интеграл.
- •2. Простейшие способы интегрирования.
- •3. Интегрирование элементарных дробей.
- •4. Интегрирование рациональных функций.
- •5. Интегрирование некоторых тригонометрических функций.
- •6. Интегрирование некоторых иррациональных функций.
- •1 Способ. Тригонометрическая подстановка.
- •7. Определенный интеграл.
- •8. Вычисление определенного интеграла.
- •9. Вычисление площадей плоских фигур.
- •10. Вычисление длины дуги кривой.
- •11. Вычисление объемов тел.
- •12. Несобственные интегралы.
- •Глава 10. Дифференциальное исчисление функций нескольких переменных
- •1. Производные и дифференциалы функций нескольких переменных.
- •2. Частные производные высших порядков.
- •3. Экстремум функции нескольких переменных.
- •4. Условный экстремум функции нескольких переменных.
- •5. Производная по направлению, градиент фнп.
5. Производная по направлению, градиент фнп.
Производная по направлению.
Рассмотрим функцию u(x, y, z) в точке М( x, y, z) и точке М1( x + x, y + y, z + z).
Проведем через точки М и М1 вектор
.
Углы наклона этого вектора к направлению
координатных осей х, у, z
обозначим соответственно ,
, .
Косинусы этих углов называются
направляющими косинусами вектора
.
Расстояние между точками М и М1 на векторе обозначим S.
Высказанные выше предположения, проиллюстрируем на рисунке:
z
M
M1
y
x
Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным х, у и z. Тогда правомерно записать следующее выражение:
,
где величины 1,
2, 3
– бесконечно малые при
.
Из геометрических соображений очевидно:
Таким образом, приведенные выше равенства могут быть представлены следующим образом:
;
Заметим, что величина s является скалярной. Она лишь определяет направление вектора .
Из этого уравнения следует следующее определение:
Определение:
Предел
называется производной функции u(x,
y, z)
по направлению вектора
в точке с координатами ( x,
y, z).
Градиент.
Определение: Если в некоторой области D задана функция u = u(x, y, z) и некоторый вектор, проекции которого на координатные оси равны значениям функции u в соответствующей точке
,
то этот вектор называется градиентом функции u.
При этом говорят, что в области D задано поле градиентов.
Связь градиента с производной по направлению.
Теорема: Пусть задана функция u = u(x, y, z) и поле градиентов
.
Тогда производная
по направлению некоторого вектора
равняется проекции вектора gradu
на вектор
.
Доказательство:
Рассмотрим единичный вектор
и некоторую функцию u =
u(x, y,
z) и найдем скалярное
произведение векторов
и gradu.
Выражение, стоящее в правой части этого равенства является производной функции u по направлению s.
Т.е.
.
Если угол между векторами gradu
и
обозначить через ,
то скалярное произведение можно записать
в виде произведения модулей этих векторов
на косинус угла между ними. С учетом
того, что вектор
единичный, т.е. его модуль равен единице,
можно записать:
Выражение, стоящее в правой части этого равенства и является проекцией вектора gradu на вектор .
Теорема доказана.
Для иллюстрации геометрического и физического смысла градиента скажем, что градиент – вектор, показывающий направление наискорейшего изменения некоторого скалярного поля u в какой- либо точке. В физике существуют такие понятия как градиент температуры, градиент давления и т.п. Т.е. направление градиента есть направление наиболее быстрого роста функции.
С точки зрения геометрического представления градиент перпендикулярен поверхности уровня функции.
