- •Часть 1
- •Глава 1. Линейная алгебра. 4
- •Глава7 Дифференциальное исчисление функции 51
- •Глава 8. Приложения дифференциального исчисления функции одной переменной. 57
- •Глава 9. Интегральное исчисление. 75
- •Глава 10. Дифференциальное исчисление функций нескольких переменных 97
- •Глава 1. Линейная алгебра.
- •1. Матрицы. Действия над ними.
- •2. Определители, их свойства.
- •3. Обратная матрица.
- •4. Решение систем линейных уравнений с помощью обратной матрицы.
- •5. Метод Крамера.
- •6. Решение произвольных систем линейных уравнений методом Гаусса.
- •Глава 2. Элементы векторной алгебры.
- •1. Векторы. Линейные операции над ними.
- •2. Скалярное произведение векторов.
- •3. Векторное произведение векторов.
- •4. Смешанное произведение векторов.
- •Глава 3. Аналитическая геометрия.
- •1. Прямая на плоскости.
- •2. Уравнения плоскости.
- •3. Уравнения прямой в пространстве.
- •Глава 4. Кривые второго порядка.
- •1.Кривые второго порядка: эллипс, гипербола, парабола (определения, канонические уравнения).
- •2. Полярная система координат.
- •Глава 5. Комплексные числа.
- •1. Определение комплексного числа. (алгебраическая форма записи).
- •2. Тригонометрическая форма записи комплексного числа.
- •3. Действия с комплексными числами.
- •4. Возведение в степень и извлечение корня из комплексного числа.
- •Глава 6. Введение в математический анализ.
- •1. Предел последовательности. Основные понятия.
- •2. Предел функции. Односторонние пределы.
- •3. Основные теоремы о пределах.
- •4. Бесконечно малые функции и их свойства.
- •5. Сравнение бесконечно малых функций.
- •6. Замена на эквивалентную в пределе. Таблица эквивалентных величин.
- •7. Непрерывность функции в точке, на интервале. Основные теоремы о непрерывных функциях.
- •8. Точки разрыва и их классификация.
- •Глава7 Дифференциальное исчисление функции одной переменной.
- •1. Производная функции, ее геометрический и физический смысл.
- •2. Основные правила дифференцирования.
- •3. Производные основных элементарных функций.
- •4. Дифференциал функции.
- •Глава 8. Приложения дифференциального исчисления функции одной переменной.
- •1. Теоремы о дифференцируемых функциях.
- •2. Исследование функций с помощью производной.
- •3. Схема исследования функций
- •Глава 9. Интегральное исчисление.
- •1. Первообразная. Неопределенный интеграл.
- •2. Простейшие способы интегрирования.
- •3. Интегрирование элементарных дробей.
- •4. Интегрирование рациональных функций.
- •5. Интегрирование некоторых тригонометрических функций.
- •6. Интегрирование некоторых иррациональных функций.
- •1 Способ. Тригонометрическая подстановка.
- •7. Определенный интеграл.
- •8. Вычисление определенного интеграла.
- •9. Вычисление площадей плоских фигур.
- •10. Вычисление длины дуги кривой.
- •11. Вычисление объемов тел.
- •12. Несобственные интегралы.
- •Глава 10. Дифференциальное исчисление функций нескольких переменных
- •1. Производные и дифференциалы функций нескольких переменных.
- •2. Частные производные высших порядков.
- •3. Экстремум функции нескольких переменных.
- •4. Условный экстремум функции нескольких переменных.
- •5. Производная по направлению, градиент фнп.
2. Частные производные высших порядков.
Если функция f(x,
y) определена в некоторой
области D, то ее частные
производные
и
тоже будут определены в той же области
или ее части.
Будем называть эти производные частными производными первого порядка.
Производные этих функций будут частными производными второго порядка.
Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.
Определение.
Частные производные вида
и
т.д. называются смешанными производными.
Теорема.
Если функция f(x,
y) и ее частные производные
определены и непрерывны в точке М(х, у)
и ее окрестности, то верно соотношение:
.
Т.е. частные производные высших порядков не зависят от порядка дифференцирования.
Аналогично определяются дифференциалы высших порядков.
…………………
Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.
3. Экстремум функции нескольких переменных.
Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М0(х0, у0) верно неравенство
то точка М0 называется точкой максимума.
Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М0(х0, у0) верно неравенство
то точка М0 называется точкой минимума.
Теорема. (Необходимые условия экстремума).
Если
функция f(x,y)
в точке (х0, у0) имеет экстремум,
то в этой точке либо обе ее частные
производные первого порядка равны нулю
,
либо хотя бы одна из них не существует.
Эту точку (х0, у0) будем называть критической точкой.
Теорема. (Достаточные условия экстремума).
Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:
Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если
- максимум, если
- минимум.
Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума
В случае, если D = 0, вывод о наличии экстремума сделать нельзя.
4. Условный экстремум функции нескольких переменных.
Условный экстремум находится, когда переменные х и у, входящие в функцию u = f( x, y), не являются независимыми, т.е. существует некоторое соотношение
(х, у) = 0, которое называется уравнением связи.
Тогда из переменных х и у только одна будет независимой, т.к. другая может быть выражена через нее из уравнения связи.
Тогда u = f(x, y(x)).
В точках экстремума:
=0 (1)
Кроме того:
(2)
Умножим равенство (2) на число и сложим с равенством (1).
Для выполнения этого условия во всех точках найдем неопределенный коэффициент так, чтобы выполнялась система трех уравнений:
Полученная система уравнений является необходимыми условиями условного экстремума. Однако это условие не является достаточным. Поэтому при нахождении критических точек требуется их дополнительное исследование на экстремум.
Выражение u = f(x, y) + (x, y) называется функцией Лагранжа.
Использование функции Лагранжа для нахождения точек экстремума функции называется также методом множителей Лагранжа.
Выше мы рассмотрели функцию двух переменных, однако, все рассуждения относительно условного экстремума могут быть распространены на функции большего числа переменных.
