Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ISO-0003.DOC
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
827.39 Кб
Скачать

I. 4.3. Третья теорема двойственности и ее экономическое содержание.

Сразу приведем ее формулировку.

Теорема (третья теорема двойственности): двойственные оценки показывают приращение целевой функции, вызванные малыми изменениями свободного члена соответствующего ограничения задачи линейного программирования, то есть

Выясним экономическое содержание третьей теоремы двойственности. Для этого в выражении, указанном в формулировке теоремы, дифференциалы заменим приращениями, то есть Получим при имеем

Двойственная оценка численно равна изменению целевой функции при изменении соответствующего ресурса на единицу. Их часто называют скрытыми, теневыми или маргинальными оценками ресурсов.

В качестве иллюстрации этого, в предыдущей задаче о выборе оптимальной технологии, выясним экономический смысл двойственных переменных.

Из последней таблицы получено решение двойственной задачи:

Как следует из решения, первый и второй ресурсы потребляются полностью. Их двойственные оценки положительны. Приращение первого ограниченного ресурса на единицу ведет к увеличению целевой функции на 12, второго - на 60, третий ресурс избыточен: Его двойственная оценка равна нулю: Поэтому дальнейшее его увеличение не окажет влияния на значение целевой функции.

Возникает вопрос: что же показывают значения дополнительных двойственных оценок Оптимальный план исходной задачи:

говорит о том, что первую технологию целесообразно использовать в течение 60 часов, третью - 12 часов. Вторая технология вообще не должна внедряться. Она заведомо убыточная. Если ее все же использовать, то она в течение каждого часа работы будет снижать достигнутый уровень выпуска на ден. единиц. Значения . Это свидетельствует о том, что первая и третья технологии не являются убыточными. В самом деле, из второго ограничения двойственной задачи следует:

Стоимость ресурсов, используемых в единицу времени при работе по второму технологическому способу, составит:

В единицу же времени этот способ может дать продукции на 250 ден. единиц. Поэтому убыток в единицу времени при работе этим способом составит

I. 4.4. Анализ чувствительности математической модели и диапазоны устойчивости.

В силу своей линейности ЗЛП обладает свойством сохранять оптимальность и допустимость решения при изменении (в некотором диапазоне) параметров задачи. Диапазоном устойчивости называют область изменения параметра ЗЛП, в которой базис остается оптимальным и допустимым. Определение диапазонов устойчивости называют иногда анализом чувствительности. Рассмотрим диапазоны изменения некоторых параметров.

I.4.4.1. Диапазон изменения небазисной переменной.

При изменении небазисной переменной изменяются базисные переменные, некоторые из них могут уменьшаться и, следовательно, может нарушиться условие допустимости - не отрицательности базисных переменных. Отсюда диапазон определяется из условия:

(Здесь ).

I.4.4.2. Диапазон изменения коэффициентов целевой функции.

а). Диапазон изменения коэффициента целевой функции при небазисной переменной. При изменении коэффициента целевой функции при небазисной переменной изменяется относительная оценка только этой небазисной переменной. Если она уменьшается, то может нарушиться условие оптимальности - не отрицательности относительных оценок. Если то

б). Диапазон изменения коэффициента целевой функции при базисной переменной. При изменении коэффициента функции при базисной переменной изменяются относительные оценки всех небазисных переменных. Если одна или несколько из них уменьшаются, то может нарушиться условие оптимальности - не отрицательности относительных оценок. Если то

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]