
- •Часть 2
- •Список сокращений
- •Введение в обмен веществ. Обмен углеводов Ориентировочная схема изучения.
- •Занятие: « обмен углеводов. Переваривание, всасывание. Использование глюкозы в клетках». Вопросы и ответы для самоподготовки:
- •1. Введение в обмен веществ
- •Углеводы пищи и их роль
- •Переваривание углеводов в пищеварительном тракте, ферменты ферменты, участвующие в этом процессе.
- •4. Всасывание моносахаридов в тонком кишечнике
- •5. Промежуточный обмен
- •Гликогеногенез
- •Упражнения и ситуационные задачи для самоконтроля
- •1.Катаболизм глюкозы. Пути окисления глюкозы в тканях
- •2.Анаэробный распад глюкозы.
- •3. Цикл Кори, значение цикла
- •6.Гликолитическое окисление глюкозы в аэробных условиях
- •8. Эффект Пастера
- •9. Пентозофосфатный путь превращения глюкозы
- •10.Значение пентозофосфатного пути окисления глюкозы:
- •11. Отличие и сходство гликолиза и пентозного пути оксиления глюкозы
- •11. Роль печени в обмене углеводов
- •12. Конечные продукты обмена углеводов, процессы, в результате которых они образуются
- •Упражнения и ситуационные задачи для самоконтроля
- •Обмен липидов Ориентировочная схема изучения
- •Вопросы и ответы для самоподготовки:
- •1. Липиды пищи, их классификация и значение.
- •2.Ферменты пищеварительных соков, участвующие в переваривании липидов.
- •3.Строение и роль желчных кислот в переваривании и всасывании липидов.
- •4.Мицелла, строение, состав
- •6.Хиломикроны, образование, состав, превращения в организме.
- •7. Липопротеиды, виды, состав, место образование, превращения и значение.
- •8. Внутрисосудистый липолиз, значение.
- •9.Роль легких в обмене липидов
- •10. Роль жировой ткани в обмене липидов.
- •11.Роль печени в обмене липидов.
- •Упражнения и ситуационные задачи для самоконтроля:
- •Вопросы и ответы для самоподготовки:
- •2.Образование фосфатидной кислоты и синтез таг, фосфолипидов.
- •1 Путь:
- •II путь:
- •Свободно-радикальное окисление липидов.
- •7.Основные компоненты антиоксидантной защитной системы.
- •Упражнения и ситуационные задачи для самоконтроля:
- •Вопросы и ответы для самоподготовки:
- •I этап - транспорт аук из митохондрий в цитоплазму
- •II. Образование малонил-КоА
- •III. Удлинение цепи жирной кислоты
- •3.Синтез кетоновых тел, причины гиперкетонемии и кетонурии, механизмы развития их при голодании и сахарном диабете.
- •5.Синтез холестерина, стадии и регуляция синтеза холестерина.
- •1 Этап. Образование мевалоновой кислоты из 3 молекул ацетил-КоА.
- •2 Этап. Образование сквалена 6 молекулами мевалоната.
- •3 Этап. Образование холестерина.
- •6. Сходства и отличия в синтезе холестерина и кетоновых тел.
- •7. Обмен холестерина. Роль печени в обмене холестерина. Роль лпнп и лпвп в обмене холестерина.
- •8.Конечные продукты обмена липидов и пути их выведения из организма.
- •9.Биохимические механизмы нарушения обмена липидов.
- •Упражнения и ситуационные задачи для самоконтроля:
- •Ориентировочная схема изучения
- •Вопросы и ответы для самоподготовки:
- •1.Особенности обмена белков
- •2. Какова суточная потребность в белке взрослого человека? Чем определяется ценность белка? Понятие об азотистом балансе.
- •3.Какие ферменты участвуют в переваривании белков в желудочно-кишечном тракте?
- •Что такое проферменты? в чем биологический смысл выработки ферментов желудочно-кишечного тракта в неактивном состоянии? Механизм превращения трипсиногена в трипсин.
- •Значение соляной кислоты в процессе переваривания белков в желудке.
- •Химический состав нормального желудочного сока.
- •Патологические составные части желудочного сока
- •Кислотность желудочного сока. Виды. Единицы измерения. Дебит-час hci.
- •10.Всасывание аминокислот
- •Упражнения и ситуационные задачи для самоконтроля:
- •Вопросы и ответы для самоподготовки:
- •1.Использование всосавшихся аминокислот.
- •2.Переаминирование, значение данного процесса в обмене веществ.
- •3.Образование креатина, судьба, значение.
- •1 Этап в почках
- •4. Дезаминирование аминокислот, виды дезаминирования.
- •5. Использование безазотистых остатков аминокислот
- •6.Превращения аммиака.
- •Декарбоксилирование аминокислот, образование биогенных аминов, их роль в обмене веществ и регуляции физиологических функций.
- •9. Роль печени в обмене простых белков.
- •10. Конечные продукты обмена простых белков, реакции, в результате которых они образуются.
- •Упражнения и ситуационные задачи для самоконтроля
- •Вопросы и ответы для самоподготовки:
- •Гемоглобин, химическая природа гема, строение глобина.
- •Синтез гемоглобина.
- •Обмен нуклеопротеидов, переваривание.
- •Окисление пуриновых оснований, образование мочевой кислоты.
- •9. Роль печени в обмене сложных белков.
- •Упражнения и ситуационные задачи для самоконтроля:
- •Вопросы и ответы для самоподготовки:
- •Регуляция взаимосвязи обмена веществ
- •Взаимопревращения углеводов и липидов
- •Взаимопревращения углеводов и белков
- •Взаимопревращения липидов и белков
- •Функции печени
- •11.Оценка функций печени
- •Печёночные пробы
- •Упражнения и ситуационные задачи для самоконтроля:
- •Вопросы и ответы для самоподготовки:
- •2.Перечислите основные типы регуляции метаболизма.
- •3.Химическая структура гормонов
- •4.Общие свойства гормонов
- •4. Основные принципы регуляции секреции гормонов
- •5. Рецепторы гормонов, клетки-мишени. Чувствительность клетки к гормонам.
- •6. Вторичные посредники, их строение. Роль, отличие друг от друга.
- •7.Механизмы действия гормонов.
- •Упражнения и ситуационные задачи для самоконтроля:
- •Вопросы и ответы для самоподготовки
- •Инсулин, образование, механизмы действия, клетки-мишени, влияние на обмен белков, углеводов и липидов.
- •Физиологические эффекты инсулина
- •2.Глюкагон, механизмы действия, клетки-мишени, влияние на обмен веществ
- •Метаболический и физиологический ответ на адреналин
- •Упражнения и ситуационные задачи для самоконтроля
- •Вопросы и ответы для самоподготовки:
- •2.Гормоны гипоталамуса
- •4.Гормоны задней доли гипофиза, химическая природа, клетки-мишени, механизм действия, физиологические эффекты, регуляция секреции.
- •Тестостерон
- •6.Участие гормонов в регуляции менструального цикла
- •8.Паратгормон, место образования, понятие о химической природе, клетки-мишени, механизм действия, физиологические эффекты, регуляция секреции
- •11.Гиперфункция щитовидной железы или Базедова болезнь, тиротоксикоз, гипертироз.
- •Упражнения и ситуационные задачи для самоконтроля
Метаболический и физиологический ответ на адреналин
Орган (ткань) |
Биохимические процессы |
Мозг |
Усиление кровотока и поступления глюкозы и кетоновых тел; повышение метаболизма глюкозы |
Сердечно-сосудистая система |
Увеличение силы и частоты сокращения; периферическая вазоконстрикция; расширение коронарных сосудов |
Легкие |
Бронходилатация; усиление вентиляции |
Мышцы |
Повышение интенсивности β-окисления СЖК и гликогенолиза; увеличение сократимости |
Печень |
Повышение продукции глюкозы (вследствие усиления глюконеогенеза и гликогенолиза, снижения синтеза гликогена, усиление -окисления, повышение синтеза кетоновых тел) |
Жировая ткань |
Повышение липолиза |
Кожа, скелет, ЖКТ, мочеполовая система, лимфоидная ткань |
Снижение кровотока, потребления глюкозы и синтеза белка; повышение протеолиза; полиурия |
Нарушение синтеза адреналина в мозговой ткани сопровождается болезнью Паркинсона.
Норадреналин, действуя через -рецепторы, сужает сосуды брюшной полости и периферические артерии. При этом повышается артериальное давление. Адреналин, действуя через -рецепторы, расширяет сосуды мозга, печени и сердца. В результате кровоток в этих органах улучшается. Таким образом, под действием катехоламинов, при стрессе происходит перераспределение кровотока, что повышает адаптативные способности организма к воздействию стресса.
Кай Юлий Цезарь заметил, что на опасность, как сказали бы сейчас, на стресс, люди реагировали по-разному. Некоторые бледнели, вследствие того, что резко сокращались сосуды кожи и другие периферические сосуды, что повышало как систолическое, так и диастолическое артериальное давление, что, в свою очередь, рефлекторно приводило к выраженной брадикардии. Так сказывается действие норадреналина. Другие люди краснели, у них повышалась работоспособность, резко усиливались обменные реакции. У них преобладали -рецепторы и больше вырабатывалось адреналина, чем норадреналина. Если адреналин усиливает процессы возбуждения, то норадреналин – процессы торможения. Поэтому люди, краснеющие в минуты опасности, более агрессивны и активны, чем бледнеющие. Установлено, что краснеющие люди живут дольше.
При длительном воздействии стресса наблюдаются нарушения. Это объясняется тем, что у больных резко повышается концентрация адреналина, поэтому адреналин связывается не только с -, но и с -рецепторами. В результате сужаются периферические сосуды, а также сосуды сердца, мозга, в которых также имеются -рецепторы. Такое состояние может вызывать инфаркты или инсульты.
Обобщая, можно сказать, что норадреналин выделяется в тех случаях, когда требуется перестройка гемодинамики, перераспределение крови, а адреналин — в тех случаях, когда нужно изменить обмен веществ в ответ на боль, травму и другие воздействия.
Глюкокортикостероиды – образуются в пучковой зоне коры надпочечников. В настоящее время из коры надпочечников выделено около 100 различных производных холестерина, называющихся кортикостероидами. Однако биологической активностью обладают десять из них, остальные представляют продукты синтеза и распада кортикостероидов.
Химическая природа: Они производные холестерина. Общим признаком всех кортикостероидов является наличие в них кольца циклопентанпергидрофенантрена, присутствие двойной связи между С4 и С5 и кетогруппы у С3. У С10 и С13 - метильная группа.
Механизм действия — все кортикостероиды действуют по II механизму, их рецепторы находятся внутри клеток. Гормон-рецепторный комплекс связывается со специфическими последовательностями ДНК, что приводит к усилению скорости транскрипции определенных генов и, как следствие, повышению синтеза белков и ферментов. Поэтому действие кортикостероидов отсроченное – начинается через 12-24 часа и достигает максимума через 10-12 дней (гормоны адаптации).
По влиянию на обмен веществ и по месту образования кортикостероиды делятся на 3 группы: в 1-ом слое (клубочковой зоне) образуются минералокортикостероиды (МКС), во 2-ом слое (пучковой зоне) - глюкокортикостероиды (ГКС), в 3-ем слое (сетчатой зоне) –андрокортикостероиды (АКС). Деление это условное, т.к. гормоны каждой группы, обладая мощным специфическим действием, оказывают еще действие гормонов другой группы. Это объясняется большим сходствам строения. АКС подобны мужскому половому гормону - тестостерону.
Наиболее активными ГКС являются кортизол (гидрокортизон) -70%, кортикостерон (10%), менее активным является кортизон (20%). У человека, обезьяны и собаки в большом количестве синтезируется кортизол, а у крыс и кроликов – кортикостерон.
В плазме крови большая часть кортизола связывается со специальным белком типа глобулинов - транскортином и сывороточным альбумином. Связывание ГКС с белками плазмы повышает их растворимость, облегчает их транспорт к органам и тканям, временно инактивирует, защищает от разрушения.
Химическая природа: кортизол и кортизон у С17 имеют OH-группу и
Кортикостерон
Кортизон
Кортизол
поэтому называются 17-оксикортикостероиды - (17-ОКС). Кортизол и кортикостерон имеют ОН-группу при С11 и называются 11-ОКС. У кортизона у С11 имеется кетогруппа. Таким образом, у всех кортикостероидов при С11 в той или иной форме присутствует кислород, и это определяет их биологическое действие, влияние на обмен веществ.
К
летки-мишени:
клетки
кожи, печени, тимуса, селезенки, жировой,
лимфоидной, соединительной и мышечной
тканей.
Физиологическое действие:
Общая направленность– катаболическая, в печени - анаболическая.
Влияние на белковый обмен: под влиянием ГКС повышается распад белков во всех клетках-мишенях, кроме печени, поэтому в крови увеличивается содержание аминокислот. Часть поступивших в печень аминокислот под влиянием трансаминаз и оксидаз аминокислот, синтез которых усиливается под влиянием ГКС, подвергаются непрямому дезаминированию. Образующиеся безазотистые остатки аминокислот используются на глюконеогенез, т.к. особенно много синтезируются в печени ферментов, участвующих в глюконеогенезе. А из аммиака образуется мочевина. В печени усливается синтез белков.
Влияние на углеводный обмен: под влиянием ГКС повышается активность глюкозо-6-фосфатазы и тормозится активность глюкокиназы печени, следовательно, глюкоза в печени не утилизируется, а имеющиеся молекулы глюкозо-6-фосфата дефосфорилируются, поэтому глюкоза используется на гликогеногенез, тем более что ГКС способствуют образованию в печени гликогенсинтетазы. Но скорость глюконеогенеза превышает намного скорость гликогеногенеза, поэтому в кровь выходит глюкоза, возникает гипергликемия, которая может вызвать глюкозурию.
Под действием ГКС угнетается превращение пирувата в ацетил-КоА, поэтому в крови много лактата.
Влияние на проницаемость сосудов: ГКС понижают проницаемость клеточных и внутриклеточных мембран, возможно через подавление активности гиалуронидазы, поэтому глюкоза не может проникнуть в клетки различных органов. Исключение составляют ткани головного мозга, в которых глюкоза используется и как источник энергии, и как источник для образования ацетилхолина.
Влияние на липидный обмен: в области нижних конечностей и нижней части туловища в жировой ткани ГКС тормозят липонеогенез, повышают липолиз, в результате в крови увеличиваются содержание СЖК, возрастает поступление их в печень, где они подвергаются -окислению. Из ацетилКоА, которая при этом образуется, синтезируются кетоновые тела. А глицерин в печени идёт на глюконеогенез.
В области лица и верхней части туловища ГКС повышают липогенез, увеличивая жировые отложения в указанных частях тела.
Taким oбpaзом, под влиянием глюкокортикоидов во всех клетках-мишенях замедляется утилизация (окисление) глюкозы; гликогеногенез, осуществляемый в печени, не может компенсировать усиленный глюконеогенез, в результате глюкоза поступает в кровь, вызывая гипергликемию, а затем глюкозурию. Это направлено на адаптацию организма к стрессу. Мышцы активно утилизируют глюкозу и СЖК, тогда как мозг в основном окисляет глюкозу и частично кетоновые тела. Эритроциты используют исключительно глюкозу.
Влияние на иммунную систему: Глюкокортикостероиды вызывают иммуносупрессию, т.к. в вилочковой железе и селезенке вызывают инволюцию лимфоидной ткани, лизируют тимоциты, тормозят выработку антител, останавливают дифференцировку Т-лимфоцитов. Угнетение лимфоидной ткани связано с ингибированием в ней митотической активности и синтеза РНК. Уменьшают связывание макрофагами антигенов. ГКС угнетают миграцию и хемотаксис лейкоцитов, фагоцитоз и синтез интерферона. Поэтому после лечения ими понижается резистентность организма к инфекциям.
Влияние на развитие воспаления: ГКС ингибируют выделение гистамина и серотонина, оказывая выраженное противо-воспалительное действие. Этот эффект ГКС обусловлен тем, что:
-они уплотняют мембраны клеток и препятствуют освобождению из фосфолипидов арахидоновой кислоты за счет ингибирования транскрипции гена фосфолипазы А2. В результате этого снижается образование простагландинов, лейкотриенов, тромбоксанов – веществ, способствующих воспалению;
-они уменьшают уровень кининов вследствие стимулирования синтеза пептидаз, разрушающих кинины;
-подавляют приток лейкоцитов в очаг воспаления и уменьшают местное разрушение фибробластов;
-они ингибируют синтез пролилгидроксилазы, в результате уменьшается образование оксипролина, который необходим для синтеза коллагена, следовательно, тормозится образование рубцовой ткани. ГКС вызывают уменьшение роста и активности фибробластов, что ведет к нарушению синтеза коллагена, задержке замены дифференцированной ткани соединительной тканью, замедляется заживление ран.
Пермиссивный эффект ГКС. Они сенсибилизируют артериолы к
действию норадреналина, участвуя в поддержании артериального давления. Предполагается, что кортизол способствует расширению сосудов почек, в результате усиливается клубочковая фильтрация и экскреция воды с мочой.
ГКС обладают разрешающим эффектом на экскрецию воды; необходимы для инициации диуреза в ответ на нагрузку жидкостью.
Кортизол тормозит секрецию СТГ и инсулиноподобного фактора роста и уменьшают синтез белка, следовательно, при гиперкортицизме наблюдается задержка роста.
ГКС препятствуют действию витамина Д на всасывание кальция и усиливают экскрецию кальция, замедляют рост. Таким образом, ГКС применяются как противовоспалительные и антиаллергические препараты.
Регуляция синтеза гормонов коркового и мозгового слоя надпочечников
Образование и секреция гормонов коркового и мозгового слоя надпочечников тесно связаны. В ответ на нервный стимул под действием ацетилхолина увеличивается секреция катехоламинов. При этом в головном мозге увеличивается секреция серотонина. Любая активация симпатической нервной системы, особенно при стрессе (травмы, опасность, гипогликемия, боль, физическая нагрузка, гипертермия) ведет к массированному выделению катехоламинов. При сильном стрессе уровень катехоламинов в крови возрастает в 4-5 раз.
Под действием катехоламинов и серотонина в гипоталамусе увеличивается образование кортикотропин-рилизинг-фактора, который, действуя на переднюю долю гипофиза, способствует секреции АКТГ. Секреция АКТГ ингибируется опиатами, ГАМК-ергическими нейронами и ГКС. Последние наиболее сильно ингибируют продукцию АКТГ и подавляют секрецию кортикотропин-рилизинг-фактора. АКТГ повышает секрецию кортикостероидов, в основном ГКС и в меньшей степени минералокортикоидов. Кортикостероиды, в свою очередь, попадая в мозговой слой надпочечников, активируют метилтрансферазу, которая способствует образованию из норадреналина адреналина.
На секрецию норадреналина влияет ацетилхолин. Считают, что ацетилхолин повышает проницаемость мембран постсинаптических клеток, усиливая поступление кальция внутрь клеток. Это приводит к излиянию катехоламинов в синаптическую щель.
На секрецию альдостерона влияют концентрации натрия и калия в крови. Снижение натрия в крови приводит к повышению альдостерона, а калия — к уменьшению. Большую роль в секреции альдостерона имеют почки, в которых при понижении артериального давления, кровопотерях, ишемии образуется фермент ренин. Он ускоряет превращение белка плазмы крови ангиотезиногена в ангиотезин 1 (декапептид), который под действием ангиотензинпревращающего фермента (АПФ) переходит в ангиотезин II. Последний действует на кору надпочечников по первому механизму, повышая активность протеинкиназы С. Это приводит к повышению кальция в цитоплазме клеток-мишеней и активации цитохрома Р450, что сопровождается повышением образования и секреции альдостерона.
Соматотропный гормон (СТГ).
Химическая природа: гормон является простым белком, состоящим из 191-го аминокислотного остатка, обладает видовой специфичностью, т.е. на человека оказывает влияние только человеческий СТГ или СТГ человекообразных обезьян.
Механизм действия:
Сложный, гормон действует по первому и третьему механизмам. Свое действие опосредует через тирозинкиназно-фосфатазный каскад (пролиферативный эффект); фосфатидилинозитидную систему и соматомедины (метаболические эффекты). Под действием гормона роста в печени образуются соматомедины трёх типов - А, В, С. Соматомедины типов А и С действуют подобно инсулину на хрящевую, соединительную и костную ткани, а соматомедины типа В - на ЦНС. Обладают инсулиноподобным эффектом, который проявляется тем, что под влиянием соматомединов усиливается проницаемость клеток-мишеней, уменьшается активность аденилатциклазы. При этом соматомедины А и С типов ускоряют пролиферацию клеток хрящевой ткани, усиливают синтез ДНК, РНК и белка в костной и соединительной ткани, такой же эффект, но в нервной ткани, оказывает соматомедин типа В.
Клетки-мишени СТГ – все клетки организма.
Физиологическое действие:
Действие гормона заключается в следующем:
- стимулирование пролиферации клеток-мишеней. Это связано с тем, что СТГ стимулирует в печени образование соматомединов и в небольшой степени инсулина (инсулиноподобный эффект). При этом усиливается включение аминокислот, уридина, тимидина и сульфатов в клетки хряща и происходит ускорение синтеза белков, нуклеиновых кислот и пролиферации хондроцитов и клеток всех других тканей;
- метаболические эффекты: вначале (в течение 30-40 минут) СТГ стимулирует проникновение глюкозы в клетки и ее окисление в них, но затем проявляет контринсулярный эффект на обмен углеводов – снижается использование глюкозы жировыми и мышечными клетками, повышается глюконеогенез в печени. Подобным образом влияет на обмен липидов – в течение 30 - 40 минут проявляет инсулиноподобное действие – усиливает липогенез, в дальнейшем снижает синтез липидов в жировой ткани, понижает захват глюкозы печенью и жировой тканью, усиливает освобождение свободных жирных кислот в кровь, т.е. усиливает липолиз и оказывает кетогенное действие;
- СТГ действует на поджелудочную железу, усиливая выработку глюкагона;
- действуя через фосфатидилинозитидную систему, гормон способствует понижению кальция во внеклеточной среде, в т.ч. в крови.
Т.о., СТГ оказывает инсулиноподобное действие на мышцы (кратковременный эффект), но в условиях длительного воздействия в больших дозах этот гормон вызывает инсулинорезистентность и проявляет диабетогенное действие. Это действие также проявляется в том, что СТГ повышает продукцию глюкозы печенью и снижает захват глюкозы тканями. Поэтому СТГ в большей степени можно отнести к контринсулярным гормонам. Двухфазовое действие СТГ (инсулиноподобное и контринсулярное) позволяет усиливать рост и анаболизм, не расплачиваясь за это гипогликемией и снижением катаболизма.
Выработка СТГ увеличивается:
при глубоком сне на ранних стадиях (медленнофазовом сне –
когда «летишь во сне»);
после воздействия пирогенов и в связи с травмой;
после мышечных упражнений;
при гипогликемии;
после введения аргинина;
после введения вазопрессина;
после введения наркотических анальгетиков.
Секреция СТГ стимулируется соматолиберином , а также тиролиберином, -эндорфином, допамином, серотонином, норадреналином, ацетилхолином. Секреция тормозится соматостатином, адреналином и СЖК плазмы крови. Гормон выделяется импульсно, в сутки 4-10 раз. Усиливают высвобождение СТГ эстрогены и глюкагон, а прогестерон снижает образование СТГ.
Нарушение секреции СТГ: гиперпродукция гормона наблюдается 1.при доброкачественной опухоли аденогипофиза, 2. у некоторых беременных перед родами. Гиперпродукция гормона у взрослых проявляется акромегалией (увеличение размеров некоторых частей тела – кистей, носа и др.
У детей гиперпродукция СТГ приводит к гигантизму. Гипопродукция гормона опасна для детей и проявляется развитием карликовости (в отличие от детского гипотиреодизма, характеризующегося развитием карликовости с умственным нарушением – кретинизмом, при недостатке СТГ у детей нарушается только рост – «умный карлик»).
Изменения эндокринной функции поджелудочной железы
могут проявляться в виде гипер- или гипофункции.
Гиперфункция поджелудочной железы
Повышение продукции инсулина наблюдается при доброкачественной опухоли поджелудочной железы. При передозировке инсулина появляются такие же признаки, что и при гиперпродукции инсулина. При этом наблюдается гипогликемия, которая проявляется слабостью вплоть до потери сознания, повышенной потливостью, понижением зрения. Неотложная помощь при таком состоянии– введение глюкозы внутривенно или (если больной в сознании) кусочек сахара под язык.
Гипофункция поджелудочной железы проявляется сахарным диабетом. По механизму возникновения сахарный диабет делится на: 1) инсулинзависимый - ИЗСД; 2) инсулиннезависимый – ИНСД.
ИЗСД возникает при недостатке инсулина.
ИНСД наблюдается чаще и связан с потерей чувствительности клеток-мишеней к инсулину.
По проявлению сахарный диабет делится на:
1) тучный, или жирный, который возникает в тех случаях, когда в организме отсутствует свободный инсулин, а связанный инсулин есть; 2) тощий, или истинный диабет проявляется, когда отсутствует и свободный и связанный инсулин.
При истинном сахарном диабете во всех клетках повышается липолиз, т.е. жировая ткань тает, происходит похудение. При тучном диабете действие инсулина сохраняется в жировой ткани, где усиливается липогенез – наблюдается ожирение.
БИОХИМИЧЕСКИЕ НАРУШЕНИЯ ПРИ САХАРНОМ ДИАБЕТЕ
Возникающие биохимические нарушения при сахарном диабете обу-
словлены не только отсутствием инсулина, но и тем, что в организме начинает превалировать действие контринсулярных гормонов - ГКС,
катехоламинов, глюкагона, СТГ.
1. При сахарном диабете возникает гипергликемия, а затем и глюкозурия. Возникновению гипергликемии способствуют следующие причины: а) отсутствие инсулина приводит к тому, что проницаемость мембран клеток уменьшается и поэтому глюкоза в меньших количествах поступает из крови в клетки и ткани; б) под влиянием контринсулярных гормонов в клетках-мишенях повышается липолиз, продукты гидролиза липидов поступают в кровь, увеличивается концентрация СЖК в крови (что также задерживает поступление глюкозы в ткани). Из крови СЖК попадают в печень, усиливается синтез ТАГ. Тем более, что в печени происходит фосфорилирование глицерина и образование -глицерофосфата, используемого для липогенеза (в др. тканях образование -глицерофосфата происходит из диоксиацетонфосфата -продукта распада глюкозы- при его восстановлении), а т.к. СТГ препятствует утилизации глюкозы в мышечной ткани, следовательно, в этой ткани не образуется ДОАФ и -глицерофосфат. Поступающие в печень СЖК препятствуют проникновению глюкозы в ткань. Усиливающийся липогенез в печени приводит к липемии и жировой инфильтрации печени;
в) ГКС повышают количество глюкозы в крови за счёт образования её из продуктов распада аминокислот; г) Катехоламины и глюкагон увеличивают количество глюкозы за счёт распада гликогена, а глюкагон также способствует глюконеогенезу из глицерина.
Таким образом, гипергликемия обусловлена уменьшением утили-зации глюкозы и повышением её синтеза из аминокислот и глицерина. Возникает парадокс - «голод среди изобилия», т.е. глюкозы в крови много, но попасть в клетки и утилизироваться она не может.
Развивающаяся гипергликемия, наряду с уменьшением процессов утилизации глюкозы, приводит к развитию глюкозурии и выведению такого ценного энергетического материала, как глюкоза. Усиленный гликогенолиз, развивающийся под влиянием контринсулярных гормонов в печени, приводит к снижению концентрации гликогена в печени. В белковом обмене наблюдается замедление синтеза РНК, белков, замедление роста и дифференцировки тканей в молодом организме и процессов репарации во взрослом.
2. Сахарный диабет характеризуется гиперкетонемией и кетонурией. Повышенная концентрация СЖК в печени прриводит к тому, что усиливается -окисление и активные уксусные кислоты используются на образование кетоновых тел (влияние адреналина и глюкагона). Кетогенез имеет биологический смысл. Дело в том, что организм больного сахарным диабетом не может использовать глюкозу как источник энергии, поэтому переходит на продукты распада липидов - кетоновые тела. Кетоновых тел образуется много, попадая в кровь, они вызывают гиперкетонемию, кетоацидоз, кетонурию. У больных сахарным диабетом много больше, чем у здорового человека из ацетоуксусной кислоты образуется ацетона, поэтому появляется фруктовый запах изо рта, пахнет даже кожа. Образование ацетона можно считать компенсаторным явлением, так организм защищается от избытка кислореагирующей ацетоуксусной кислоты.
3. Для сахарного диабета характерны полиурия, полидипсия: сухость во рту, дряблость кожи, увеличение вязкости крови. Полиурия возникает от того, что гипергликемия, увеличивающая осмотическое давление крови, способствует транспорту воды из клеток в кровь, а затем выделению с мочой больших количеств воды с глюкозой мочи. Полиурия обусловливает обезвоживание организма, сухость слизистых тканей, сухость слизистой ротовой полости, раздражение центра жажды, полидипсию. Дряблость кожи, мышц можно объяснить не только повышенным распадом в них белков, но и обезвоживанием указанных тканей.
4. Характерны также азотемия и выделение в больших количествах азотсодержащих веществ. Здесь проявляется действие ГКС: они вызывают распад белков до аминокислот, образовав-шийся при дезаминировании аммиак используется на образование мочевины, последний выделяется с мочой).
5. В некоторые ткани, так называемые инсулин-независимые– нервная ткань, хрусталик, эритроциты, семенные пузырьки, -клетки, поступает глюкоза (поступление глюкозы не зависит от инсулина, а зависит от концентрации глюкозы в крови), глюкозы поступает много, она не успевает фосфорилироваться и превращается в сорбитол и фруктозу, осмотически активные вещества, наличие которых вызывает повреждение указанных тканей. Если при истинном сахарном диабете во всех клетках-мишенях наблюдается повышенный липолиз, жировая ткань «тает», больной худеет, то при тучном диабете в жировой ткани сохраняется регуляторное влияние инсулина (в ней есть рецепторы связанного инсулина), поэтому в этой ткани продолжают идти процессы липогенеза, больной толстеет.