Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЛАВА 5 Покрепин ЭНГС для ЗО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
25.65 Mб
Скачать

5.17. Исследование скважин, эксплуатируемых штанговыми насосными установками

Рассмотрим особенности исследования глубинно-насосных скважин.

При исследовании на стационарных режимах изменение режима работы скважины осуществляется изменением подачи скважинного штангового насоса, что реализуется изменением длины хода полированного штока S, либо изменением числа качаний п. Принципиально возможно изменение режима работы скважины заменой глубинного насоса (его диаметра), но это тре­бует дополнительных спускоподъемных работ на скважине.

При изменении режима работы системы установившийся режим ее контролируется по стабилизации подачи установки, а также по стабилизации устьевого и затрубного давления. На каждом установившемся режиме замеряется подача установки (дебит скважины) и забойное давление. Измерение забойного давления возможно только через затрубное пространство, для чего созданы малогабаритные скважинные манометры и разработана технология их спуска в затрубное пространство. При этом колонна НКТ подвешивается эксцентрично на спе­циальной планшайбе, имеющей технологическое отверстие с сальниковым устройством, через которое в затрубное про­странство спускается на проволоке малогабаритный манометр.

Нижний конец насоса оборудуется специальным башмаком, направляющим малогабаритный манометр вдоль насоса и при дальнейшем его спуске на забой скважины. Технология спуска приборов через затрубное пространство является достаточно сложной и требует высокой квалификации специалистов под­земного ремонта и операторов по исследованию скважин. Эта технология неприменима для глубоких искривленных скважин (со сложным профилем ствола) и при малых зазорах затрубного пространства. В этих случаях измерение забойного давления осуществляется специальными лифтовыми скважинными манометрами, закрепляемыми под насосом и спускаемыми в скважину вместе с насосом и НКТ при подземном ремонте. Эти манометры имеют часовой механизм с многосуточным заводом или батарейным электропитанием и фиксируют изменение за­бойного давления на специальном бланке. Расшифровка бланка возможна только после подъема НКТ, насоса и манометра, что требует дополнительного подземного ремонта.

В настоящее время лифтовые манометры применяются достаточно редко.

Основным методом получения информации о забойном давлении является метод измерения динамического уровня в процессе исследования скважины с последующим расчетом забойного давления.

Измерение динамического уровня осуществляется специ­альным прибором (эхолотом), состоящим из устройства гене­рации упругого или акустического сигнала, системы приема и усиления сигнала, а также системы его регистрации и хранения. В настоящее время отечественная промышленность серийно вы­пускает программно-аппаратный комплекс «МИКОН-101-01», предназначенный для определения уровня жидкости и измере­ния давления в затрубном пространстве; регистрации кривых падения и восстановления уровня; регистрации парафиновых и гидратных пробок и т.д. Все зарегистрированные эхограммы заносятся в энергонезависимую память блока регистрации с возможностью переноса их на компьютер, последующей обработкой и выводом на принтер со всей сопутствующей информацией.

Микропроцессорный блок регистрации предназначен для регистрации, обработки и хранения эхограмм и позволя­ет просматривать эхограммы непосредственно на скважине. Устройство приема акустических сигналов предназначено для преобразования акустических сигналов в электрические.

В скважинах с избыточным давлением в затрубном про­странстве для создания упругого импульса используется клапанный узел «МИКОН К-3». В скважинах, в которых в затрубном пространстве отсутствует избыточное давление, для создания акустического импульса используется устройство генерации акустических сигналов «УГАС-14». Устройство ис­полняется в двух вариантах: а) с вакуумным разрядником; б) с ручным компрессором.

Данный эхолот позволяет измерять уровни от 50 до 3000 м; диапазон измеряемого давления: 0—10 МПа; рабочий диапазон температур: -40 - +50°С; масса прибора 7,6 кг.

Скорость распространения акустического сигнала или им­пульса давления зависит от давления в затрубном пространстве, состава газа, температуры и других параметров и определяется

микропроцессором по специальным таблицам, имеющимся в памяти.

При создании в затрубном пространстве упругого импульса или акустического сигнала он распространяется в газовой среде с определенной скоростью до уровня жидкости и частично от­ражается. Отраженный импульс (сигнал) поступает в приемное устройство прибора, преобразуется в электрический сигнал, который усиливается и фиксируется. Таким образом фиксиру­ются момент создания в системе упругого импульса и момент возвращения отраженной от уровня жидкости в затрубном пространстве части упругого импульса, что представлено на эхограмме (рис. 5.27, а).

Момент создания на устье в затрубном пространстве упру­гого импульса (момент T0 отражается на эхограмме пиком. Упругий импульс распространяется в газовой среде с опреде­ленной скоростью v, достигает уровня жидкости, частично от­ражается и возвращается на устье скважины, где фиксируется приемным устройством прибора и отображается на эхограмме пиком (момент Т2). Таким образом, с момента создания упругого импульса до момента регистрации его отраженной от уровня жидкости части проходит время Т=Т2 - Г0. За это время упругий

импульс проходит двойное расстояние от устья скважины до динамического уровня жидкости Ндин т.е.

2Hduн = vT (5.28)

где v — скорость распространения упругого импульса в газовой среде, зависящая от давления газа в затрубном про­странстве Р3, температуры в затрубном пространстве Тз состава газа и др., м/с.

Эта скорость может быть рассчитана по известным форму­лам, но требуется знание большого количества информации, что не всегда доступно в промысловых условиях. С целью определения скорости распространения упругого импульса в исследуемой скважине на известной глубине колонны НКТ устанавливается в процессе подземного ремонта так называе­мый репер, представляющий собой утолщенную муфту НКТ. После создания упругого импульса он распространяется в затрубном пространстве и при достижении репера часть его отражается, фиксируется приемным устройством прибора и за­писывается в виде пика, соответствующего моменту времени Т1 (рис. 5.27, 6). Другая часть упругого импульса распространяется до уровня жидкости и частично отражается, что фиксируется и регистрируется на устье в виде пика, соответствующего времени Т2 (рис. 5.27, б). Таким образом, упругий импульс с момента его создания (время То) до момента регистрации отраженной от репера его части (время Т1 проходит путь, равный удвоенному расстоянию до репера Я за время t = T1- To: 2Hp=vt или

Подставляя (5.29) в (5.28), получаем:

Зная динамический уровень Ндин, легко рассчитать забойное давление.

Пользуясь данным прибором, можно проводить исследова­ние глубинно-насосных скважин и на нестационарном режиме работы. Наиболее ценные результаты получают при совмеще­нии исследований глубинно-насосной установки динамогра­фом и гидродинамических исследований скважины.