- •Устаткування та систем газопостачання»
- •Тема 1: Крильчасті насоси План
- •Література
- •1.1.2 Класифікація насосів
- •1.1.3 Принцип дії динамічних і об’ємних насосів
- •1.1.4 Основні параметри насосів: подача, напір, потужність і ккд
- •1.2 Основи теорії крильчастих насосів і їх властивості
- •1.2.1 Схема будови та принцип дії відцентрового насоса
- •1.2.2 Класифікація відцентрових насосів
- •1.2.3 Рівняння Ейлера
- •1.2.4 Залежність подачі, напору і потужності насоса від частоти обертання вала
- •1.2.5 Баланс енергії і коефіцієнт корисної дії динамічної машини
- •1.3 Теорія подібності крильчастих насосів
- •1.3.1 Явище подібності у відцентрових насосів
- •1.3.2 Коефіцієнт швидкохідності. Класифікація коліс за коефіцієнтом швидкохідності
- •1.3.3 Паралельна робота відцентрових насосів
- •1.3.4 Послідовна робота відцентрових насосів
- •1.3.5 Кавітація. Визначення висоти всмоктування динамічного насоса
- •1.3.6 Регулювання роботи відцентрових машин
- •1.3.6.2 Регулювання зміною частоти обертання вала машини
- •1.3.6.3 Регулювання зміною зовнішнього діаметра робочого колеса
- •1.3.6.4 Інші способи регулювання
- •1.4 Вихрові та струминні насоси
- •1.4.1 Вихрові насоси
- •1.4.2 Гідроструминні насоси
- •Питання для самоконтролю
- •3. Принцип дії динамічних і об’ємних насосів.
- •7. Класифікація відцентрових насосів.
- •13. Кавітація. Визначення висоти всмоктування динамічного насоса.
- •Тема 2: Гідродинамічні передачі План
- •Література
- •2.1 Основні відомості гідродинамічних передач
- •2.2 Гідромуфта
- •2.3 Гідротрансформатор
- •2.4 Основні теорії гідродинамічних передач
- •2.5 Способи регулювання режиму роботи гідромуфти та основні її характеристики
- •2.6 Основні характеристики гідротрансформатора
- •Питання для самоконтролю
- •3. Принцип дії динамічних і об’ємних насосів.
- •Тема 3: Об’ємні насоси і гідродвигуни План
- •Література
- •3.1 Загальні положення
- •3.2 Поршневі насоси
- •3.2.1 Класифікація і принцип дії поршневих насосів
- •3.2.2 Подача поршневих насосів
- •3.2.3 Характеристика подачі поршневих насосів
- •3.2.4 Повітряні ковпаки
- •3.2.5 Індикаторна діаграма роботи поршневого насоса
- •3.3 Роторні насоси
- •3.3.1 Класифікація роторних насосів
- •3.3.2 Шестеренчасті насоси
- •3.3.3 Гвинтові насоси
- •3.3.4 Пластинчасті насоси
- •3.3.5 Роторно-поршневі насоси
- •3.3.5.1 Радіально-поршневі насоси
- •3.3.5.2 Аксіально-поршневі насоси
- •3.4 Гідродвигуни
- •3.4.1 Гідроциліндри
- •3.4.2 Гідродвигуни зворотно-поступального руху
- •3.4.3 Поворотні гідродвигуни
- •3.4.4 Привід насосів та з’єднання вала гідромотора з валом виконуючого органа
- •Питання для самоконтролю
- •Список літератури
3.3.3 Гвинтові насоси
Гвинтові насоси з прямокутною нарізкою вперше з’явилися в першій чверті нашого сторіччя, але тоді вони не набули поширення через низький ККД.
У 1932 р. шведський інженер Монтеліус створив гвинтові насоси з профілем нарізки гвинтів, окресленим циклоїдальний кривими. Насоси з такою нарізкою називають насосами з циклоїдним зачепленням. Гвинтові насоси з циклоїдним зачепленням створюють хорошу герметичність при роботі і мають високий ККД. Роботи зі створення гвинтових насосів в СРСР почалися з 1934 р. Теоретичне обгрунтування профілів нарізки гвинтів Монтеліус вперше було дано Г. В. Складневим. У розробці теорії гвинтових насосів брали участь багато радянські вчені: А. Є. Жмудь, О. А. Пиж, І. І. Кукольовський, О.В. Байбаков, А. М. Васильєв та ін.
Гвинтові насоси в даний час знаходять все більше застосування в гідроприводу автоматичних ліній, верстатів та машин, в суднобудуванні та інших галузях техніки.
Гвинтові насоси відносяться до типу об’ємних, де подача здійснюється шляхом витіснення рідини гвинтами. Гвинти (рис. 3.8 , а) є робочим органом насоса й роблять при роботі тільки обертальний рух. У гвинтового насоса відсутній зворотно-поступальний рух поршня або плунжера, немає всмоктуючого і нагнітального клапанів, що є основною перевагою перед поршневими насосами. Гвинтові насоси мають малі габарити, володіють легкістю і швидкістю, здатні створювати тиску до 20 МПа і більше та частоту обертання гвинтів до 10000 об/хв; мають безпульсаційну подачу рідини.
Робочим гвинтом у цих насосів є тільки один ведучий. Ведені гвинти служать як би ущільнювачами, що перешкоджають протіканню рідини з камери нагнітання в камеру всмоктування. Внутрішній діаметр ведучого гвинта і зовнішні діаметри ведених гвинтів завжди рівні між собою.
Нарізки трьох гвинтів під час роботи насоса, стикаючись між собою, утворюють безперервну поверхню розділу, яка має гарну герметичністю і виконує роль поршня при переміщенні рідини з камери всмоктування в камеру нагнітання.
Поверхня розділу в межах кожного кроку гвинта повторюється і, отже, зі збільшенням числа кроків по робочій довжині гвинтів число порожнин зростає. Кожна така порожнина в межах кроку гвинта є окремою сходинкою, як це ми маємо на багатоступінчастому насосі, що дозволяє внаслідок збільшення довжини гвинтів створювати великий тиск з високим об’ємним ККД.
Рисунок 3.8 – Гвинтовий насос
Гвинтовий насос має три основні частини: статор – корпус насоса з порожнинами, що примикають до камери всмоктування і камери нагнітання, розташованими на кінцях гвинтів; ротор – гвинт (ведучий), який приводиться в обертальний рух від двигуна; замикачі – ведені гвинти насоса, службовці для ущільнення насоса і не дають рідини перетікати з камери нагнітання в камеру всмоктування.
Для врівноваження осьового тиску, що діє від камери нагнітання до камери всмоктування, в гвинтах насоса або в його корпусі влаштовують канали, по яких рідина з боку камери нагнітання підводиться під торці гвинтів в камері всмоктування. Для захисту від пошкоджень насоса і всієї гідросистеми в корпусі вмонтовано запобіжний клапан.
Принцип дії гвинтового насоса полягає в наступному. Від двигуна провідний гвинт приводиться в обертальний рух, при цьому поверхня розділу гвинтів відсікає обсяг рідини, що знаходиться в западинах гвинтів в камері всмоктування. Після цього рідина рухається уздовж гвинтів в камеру нагнітання і далі в нагнітальну трубу насоса. Як тільки буде відтятий об’єм рідини в камері всмоктування і рідина почне рухатися до камери нагнітання, в камері всмоктування виникає розрідження (вакуум), внаслідок чого по всмоктувальній трубі рідина знову надходить у камеру всмоктування і заповняє западини гвинтів; далі процес повторюється, зберігаючи безперервність роботи насоса.
За кількістю гвинтів розрізняють одно-, дво-, три-, чотири- і пятигвинтові насоси. Найбільш поширеними є тригвинтові насоси.
Гвинтові насоси виготовляють на тиск від 0,4-0,7 МПа до 20 МПа і більше.
Теоретичну подачу гвинтового насоса визначають наступним чином. Подаваний гвинтами за один оборот гвинтів об’єм рідини визначається за формулою:
(3.33)
де ω – живий перетин западин між витками гвинтів, ω=1,243d2н, м2;
h – крок гвинта, h=πdнtgβ=10dн/3, м;
β – кут підйому гвинтової лінії, зазвичай β=26...46° (при такій величині β виключається самогальмування).
Якщо за n оборотів в хвилину подається об’єм рідини:
(3.34)
тоді в 1 хвилину теоретична подача насоса визначається за формулою:
(3.35)
або
(3.36)
Теоретична подача в 1 с визначається за формулою:
(3.37)
або
(3.38)
У формулах (3.35), (3.36) і (3.38):
dн – діаметр окружності виступів веденого гвинта і діаметр кола западин ведучого гвинта, м;
n – частота обертання ведучого гвинта в хвилину, об/хв.
Дійсна подача насоса визначається за формулою:
(3.39)
де ηυ – об’ємний ККД насоса, зазвичай ηυ=0,8...0,95; при цьому чим більшу насос має подачу Q, тим більше ККД.
Повний ККД насоса визначається за формулою:
(3.40)
де ηм – механічний ККД, що враховує механічні втрати в гвинтах, підшипниках і сальниках гвинтів; ηм=0,85...0,95; ηм=0,95 відноситься до насосів великої потужності;
ηг – гідравлічний ККД, що враховує гідравлічні втрати; однак у гвинтових насосів вони настільки незначні внаслідок невеликих швидкостей рідини в проточних каналах корпусу і гвинтів насоса, що приймають ηг=1.
Тоді повний ККД гвинтового насоса визначається за формулою:
(3.41)
Для забезпечення безкавітаційної роботи гвинтового насоса частоту обертання визначають з нерівності:
(3.42)
де Q – подача, л/с;
η – об’ємний ККД насоса, який для попередніх розрахунків слід брати в межах 0,8...0,85.
Потужність насоса визначають за формулами (3.32).
Допустиму висоту всмоктування у гвинтових насосів можна приймати до 8-9 м. Звичайно число витків нарізки на робочій довжині гвинта приймають: для насосів низького тиску z=1,5h; для середнього тиску z=3h і для високого тиску z=5h. Найбільш поширеними гвинтовими насосами є насоси серії МВН (табл. 3.4).
Таблиця 3.4 – Технічна характеристика гвинтових насосів
Марка насоса |
Подача насоса Q |
Максимальний тиск р, МПа |
Частота обертання n, об/хв |
ККД |
Розмір гвинта |
|||
м3/год |
л/с |
ηυ |
η |
Діаметр dн, мм |
Довжина Lр, мм |
|||
МВН-0,8 |
2,9 |
0,8 |
0,5 |
1430 |
0,80 |
0,66 |
21,6 |
108 |
МВН-6 |
21,6 |
0,6 |
2,5 |
1460 |
0,81 |
0,71 |
42,0 |
214 |
МВН-10 |
39,6 |
10,0 |
2,5 |
1460 |
0,82 |
0,72 |
51,0 |
255 |
МВН-25 |
90,0 |
25,0 |
2,5 |
1460 |
0,86 |
0,74 |
66,0 |
330 |
