
- •Isbn 5-03-001053-х (русск.) isbn 0-306-42967-5 (англ.)
- •1.1. Спонтанное и вынужденное излучение; поглощение
- •1.1.1. Спонтанное излучение (рис. L.Lf а)
- •1.1.2. Вынужденное излучение (рис. 1л?б)
- •1.2. Принцип работы лазера
- •1.3. Схемы накачки.
- •БН&лиогека вшшгездячшсогв институт з
- •1.4. Свойства лазерных пучков
- •1.4.1. Монохроматичность
- •1.4.2. Когерентность
- •1.4.3. Направленность
- •Электромагнитная Волна
- •1*4.4. Яркость
- •1.4.5. Импульсы малой длительности
- •1.5. Структура книги
- •2.1. Введение
- •2.2. Теория излучения черного тела [1]
- •2.3. Поглощение и вынужденное излучение
- •2,3.1. Вероятности поглощения и вынужденного излучения
- •2.3.3. Механизм уширения линии
- •2.3.3.1. Однородное ушарение
- •2.3.3.2. Неоднородное уширение
- •2.3,3.3. Выводы и примеры
- •2.3.4. Сечение перехода, коэффициенты поглощения и усиления
- •2.4, Спонтанное излучение
- •2.4 Л. Полуклассический подход
- •2.4.2. Квантовоэлектродинамический подход
- •2.4.3. Термодинамический подход Эйнштейна
- •2.4.4. Связь между спонтанным временем жизни
- •Ол *споит
- •2.4.5, Заключительные замечания
- •2.5. Безызлучательная релаксация [11]
- •2.6. Насыщение
- •2.6.1. Насыщение поглощения; однородно уширенная линия
- •2.6.3. Неоднородно уширенная линия
- •2.7. Релаксация многоатомной системы
- •2.7.1. Захват излучения
- •2.7.2. Сверхизлучение и суперлюминесценция
- •2,8. Вырожденные уровни
- •2.9. Молекулярные системы
- •2,9,1. Энергетические уровни молекул
- •2.9.2. Заселенность уровней при тепловом равновесии
- •2.9.3. Излучательные и безызлучательные переходы
- •2.9.4. Квантовомеханический расчет вероятностей
- •Литература
- •3.1. Введение
- •3.2. Оптическая накачка [1, 2]
- •3.2.1. Кпд накачки
- •3,2.2. Излучательная эффективность и эффективность передачи1)
- •3,2.5. Заключительные замечания
- •3.3. Электрическая накачка
- •3.3.1. Физические свойства газовых разрядов [10—12]
- •3.3.2. Возбуждение электронным ударом
- •3.3.2.1. Сечение электронного удара [13]
- •3.3.2.2. Распределение энергии электронов
- •3.3.2.4. Уравнение ионизационного равновесия
- •3.3.2.5. Вычисление скорости накачки
- •3.3.3. Возбуждение посредством (около)резонансной
- •3J1. Покажите, что упругие столкновения встречаются значительно более
- •3.12. Теория амбиполярной диффузии дает следующее соотношение между электронной температурой т„ и произведением pD:
- •Литература
- •4.1. Введение
- •4.2. Некоторые разделы геометрической и волновой оптики
- •4.2.1. Матричная формулировка геометрической оптики [1]
- •4.2.2. Интерферометр Фабри—Перо [2]
- •4.2.3. Многослойные диэлектрические покрытия [3, 4]
- •Падают пучок
- •Отраженный
- •4.3. Время жизни фотона и добротность резонатора
- •4.4. Плоскопараллельный резонатор
- •4.4.1. Приближенная теория
- •4.4.2. Теория Фокса и Ли
- •4,5, Конфокальный резонатор [8]
- •4.6. Распространение гауссова пучка
- •Волны (б).
- •4.7. Обобщенный сферический резонатор [8]
- •4.7.1. Амплитуды мод
- •4.7.2. Резонансные частоты и дифракционные потери
- •4.7.3. Условие устойчивости
- •1 Положительная
- •(Кпршщтщшт ветвь
- •Отрицательная йетвь
- •4.8. Неустойчивые резонаторы [14, 15]
- •4.8.1. Геометрическое описание
- •4.8.2. Описание с помощью волновой оптики
- •4.8.3. Достоинства и недостатки неустойчивых резонаторов
- •4.8.4. Неустойчивые резонаторы с переменным коэффициентом отражения
- •Литература
- •5Л. Введение
- •5.2. Скоростные уравнения [2, 3]
- •5.2.1. Четырехуровневый лазер
- •5.2.2. Трехуровневый лазер
- •5.3. Непрерывный режим работы лазера
- •5.3.1. Четырехуровневый лазер
- •5.3.2. Трехуровневый лазер
- •5.3.3. Оптимальная связь на выходе лазера [7]
- •5.3.4. Перестройка частоты генерации лазера
- •5*3.5. Одномодовая и многомодовая генерация
- •5.3S.L Причины возникновения многоходовой генерации
- •5.3.5.2. Одномодовый режим генерации
- •5*3.6. Два числовых примера
- •5.3.8. Провал Лэмба и активная стабилизация
- •5.4, Нестационарный режим работы лазера
- •5.4Л, Релаксационные колебания в одномодовых лазерах
- •5.4.2, Пичковый режим многомодовых лазеров
- •5.4,3. Модуляция добротности [21]
- •5.4.3.1. Методы модуляции добротности
- •Дисррскшрозиитт пучок
- •5.4.3.2. Режимы генерации
- •5.4.3.4. Числовой пример
- •5.4.4. Модуляция усиления
- •5.4.5. Синхронизация мод [26, 27]
- •5.4Mj. Методы синхронизации мод
- •Машцштшйсн поглотитель
- •5.4.5.2. Лазерные системы с сихронизацией мод
- •5.4.6. Разгрузка резонатора
- •Выходной пучок
- •Ахтпшная среда
- •Дифрагированные пучки
- •5.5. Заключительные замечания
- •Литература
- •5. Непрерывный и нестационарный режимы работы лазеров
- •6.2. Твердотельные лазеры
- •6.2.1. Рубиновый лазер [1]
- •6.2.2. Неодимовые лазеры [4—6]
- •6.2.2.1. Nd : yag-лазер
- •6.2X2. Стекло с неодимом [7]
- •6.2.3. Лазер на александрите [8]
- •6.3.1. Лазеры на нейтральных атомах
- •6.Зал. Гелий-неоновые лазеры
- •6.3.1.2. Лазеры на парах меди и золота [12]
- •6.3,2. Ионные лазеры
- •6,3.2.1. Аргоновый лазер [13, 14]
- •Метастабитные уровни
- •6.3.3. Молекулярные газовые лазеры
- •6,3.3.3. Азотный лазер [21]
- •6.3.3.4. Эксимерные лазеры [22]
- •6.4. Жидкостные лазеры (лазеры на красителях) [23]
- •6.4.1. Фотофизические свойства органических красителей
- •Синметные Тршетные состояния состояния
- •6,4.2, Параметры лазеров на красителях
- •Модулированной добротностью.
- •Зеркало накачки
- •6.5. Химические лазеры [26f 27]
- •6.5.1. Лазер на hf
- •6.6. Полупроводниковые лазеры [28]
- •6.6.1.3. Излучательные и безызлучательные переходы
- •6.61.4. Квазиуровни Ферми
- •6.6.2.1. Лазер на гомопереходе
- •6.6.2.2. Лазер на двойном гетеропереходе
- •6*6.4. Применения полупроводниковых лазеров
- •6.6.5. Упрощенная теория полупроводникового лазера
- •6.7. Лазеры на центрах окраски [37]
- •3EpKpj7i? с „высокой
- •I V/ ospxcuw Сатрираше rtrtacmuxxti
- •6,8. Лазер на свободных электронах [3.8]
- •6.9. Рентгеновские лазеры
- •6.10. Сводка параметров
- •Назовите хотя бы четыре лазера, длины волн которых попадают в ик-область спектра.
- •Вычислите ширину лэмбовского провала для с02-лазера с продольной прокачкой и сравните ее с доплеровской шириной.
- •Литература
- •7.1. Введение
- •7.2. Монохроматичность
- •7.3. Комплексное представление полей
- •7,4. Статистические свойства лазерного излучения и излучения тепловых источников
- •7.5. Когерентность первого порядка [3]
- •7.5.1. Степень пространственной и временной когерентности
- •7.5.2. Измерение пространственной и временной когерентностей
- •Сзетазал волна
- •7.5.3. Соотношение между временной когерентностью и монохроматичностью
- •7.5.5. Пространственная и временная когерентность одномодовых и многомодовых лазеров
- •7.6. Направленность
- •7.6.1. Пучки с полной пространственной когерентностью
- •(Лампы).
- •7.7. Лазерная спекл-картина [6, 7]
- •7.8. Яркость
- •7.9. Сравнение лазерного и теплового излучений
- •Литература
- •Преобразование лазерного пучка: распространение, усиление, преобразование частоты, сжатие импульса
- •8.1. Введение
- •8.2. Преобразование в пространстве; распространение гауссова Пучка
- •8.3. Преобразование амплитуды: лазерное усиление [6—8]
- •8.4. Преобразование частоты; генерация второй гармоники и параметрическая генерация [9-11]
- •8.4.1. Физическая картина
- •Химическая формула
- •8.4,1.2, Параметрическая генерация
- •8*4,2. Аналитическое рассмотрение
- •8.4.2.1. Параметрическая генерация
- •2Ш ф exp[/(aJte)l (8.90а)
- •8.5. Временное преобразование; сжатие импульса
- •6;Ic Дифракаматая решетка Сжатый импульс " о, г т д ифрякцаонноя решетки Одн&уюдззсе оптическое волокно
- •6 Пс примерно в 10 раз.
- •Литература
- •Полуклассическая теория взаимодействия излучения с веществом
- •Пространственно-зависимые скоростные уравнения
- •Теория активной синхронизации мод для однородно уширенной линии
- •Литература
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Периодическая последова-
- •При замене суммы интегралом получается не тельность импульсов, а одиночный импульс.
- •Глава 6
- •Глава 7
- •Только в 2 раза. .
- •Глава 8
- •Введение
- •5.3. Непрерывный режим работы лазера 245 .
- •6. F Полупроводниковые лазеры г28м
Насыщающийся поглотитель
\Машцштшйсн поглотитель
1
5 (I В
I
I
i
зеркало резонатора
зерна пи резо/шош/т а
HHe*> в поглотителе. Этот импульс будет нарастать быстрее других, а после многих проходов резонатора в конечном счете установится картина, изображенная на рис. 5.44,
Рис. 5.44. Временное представление процесса пассивной синхронизации мод.
когда останется один мощный импульс, В действительности насыщаю -
щийся поглотитель действует так, как мы описали выше, только если его время релаксации меньше промежутка времени между двумя последовательными шумовыми импульсами на рис. 5.44, а или по крайней мере сравнимо с ним (обычно около нескольких десятков пикосекунд). В случае медленного поглотителя (т. е. когда х имеет порядок нескольких наносекунд) насыщение поглотителя, вызванное, например, импульсом 1 на рис. 5.44, а, не успеет заметно релакси-ровать к моменту прихода импульса 3 и выделения наиболее интенсивного импульса не будет происходить.
Хотя во многих лазерах с пассивной синхронизацией мод применяются быстрые насыщающиеся поглотители, в некоторых условиях синхронизацию мод могут обеспечить также медленные насыщающиеся поглотители. Это возможно, когда энергия насыщения усиливающей среды сравнима с энергией насыщения поглотителя, хотя и несколько превышает ее. К синхронизации мод в этом случае приводят весьма тонкие физические явления [28], которые мы опишем с помощью рис. 5.45. Для простоты предположим, что как насыщающийся поглотитель, так и активная среда помещены вместе в одну и ту же кювету на одном из концов лазерного резонатора. Будем считать, что до появления импульса потери преобладают над усилением, поэтому участок переднего фронта импульса испытывает ослабление. С некоторого момента времени в течение переднего фронта импульса, когда накопленная плотность энергии импульса станет сравни-
Относительное ослабление. — Прим. перев.
мой с плотностью энергии насыщения поглотителя, поглотитель начнет насыщаться. Потери в поглотителе могут таким образом оказаться меньше, чем усиление, и, если энергия импульса достаточно велика, это произойдет в некий момент времени на переднем фронте импульса (точки tx и t[ на рис. 5.45). Начиная
с этого времени импульс будет не ослабляться, а усиливаться. Однако, если плотность энергии насыщения усиливающей среды лишь ненамного выше, чем у насыщающегося поглотителя, то
т1 \
Нсссыщающеес*
усиление
д (i)
I
Рис. 5.45. Непрерывная синхронизация мод с помощью медленно насыщающегося поглотителя. Заметим, что на рисунке не соблюдается масштаб, поскольку длительность синхронизованного импульса обычно меньше 1 пс, тогда как интервал времени между двумя последовательными импульсами тР, т. е. время обхода резонатора, равно обычно нескольким наносекундам.
насыщение усиления тоже произойдет несколько позже на временной шкале импульса. Следовательно, в некоторый момент времени на заднем фронте импульса (точки t2 и t'2 на рис. 5.45)
усиление может стать меньше потерь. При указанных выше условиях импульс будет испытывать усиление в своей центральной части (т. е. при t\ < t < fe) и ослабление на краях (т. е. при t < tx и t > t2). Таким образом, при прохождении через кювету импульс будет сужаться и усиливаться. Этот процесс сужения и усиления прекратится тогда, когда длительность импульса станет сравнимой с обратной шириной полосы усиления Av0. Следовательно, в этом случае длительность импульса Ахр должна быть примерно равна 1/Avq. Заметим, наконец, что после прохождения импульса в режиме синхронизации мод и до появления следующего насыщающиеся потери восстанавливаются до своего исходного уровня посредством спонтанной (излучательной и безызлучательной) релаксации. В течение того же самого интервала времени в процессе накачки восстанавливается начальное значение насыщающегося усиления. Чтобы это происходило, необходимо, чтобы время восстановления усиливающей среды (т. е. время жизни ее верхнего уровня) было сравнимо с временем полного прохода резонатора. Поэтому данный тип синхронизации мод можно реализовать на короткоживущих (порядка нескольких наносекунд) усиливающих средах, таких» как красители или полупроводники, но его нельзя осуществить на долгоживущих (порядка 1 мс) усиливающих средах, вроде Nd; YAG или С02. Однако если выполнить весьма тонкие условия, необходимые для данного метода синхронизации мод, то можно получать очень короткие световые импульсы длительностью вплоть до обратной ширины линии лазера. Действительно, таким способом в лазере на красителе с непрерывной накачкой и пассивной синхронизацией мод были получены самые короткие импульсы (~ 25 фс в лазере на родамине 6G с синхронизацией мод на насыщающемся поглотителе DODCI).