
- •Isbn 5-03-001053-х (русск.) isbn 0-306-42967-5 (англ.)
- •1.1. Спонтанное и вынужденное излучение; поглощение
- •1.1.1. Спонтанное излучение (рис. L.Lf а)
- •1.1.2. Вынужденное излучение (рис. 1л?б)
- •1.2. Принцип работы лазера
- •1.3. Схемы накачки.
- •БН&лиогека вшшгездячшсогв институт з
- •1.4. Свойства лазерных пучков
- •1.4.1. Монохроматичность
- •1.4.2. Когерентность
- •1.4.3. Направленность
- •Электромагнитная Волна
- •1*4.4. Яркость
- •1.4.5. Импульсы малой длительности
- •1.5. Структура книги
- •2.1. Введение
- •2.2. Теория излучения черного тела [1]
- •2.3. Поглощение и вынужденное излучение
- •2,3.1. Вероятности поглощения и вынужденного излучения
- •2.3.3. Механизм уширения линии
- •2.3.3.1. Однородное ушарение
- •2.3.3.2. Неоднородное уширение
- •2.3,3.3. Выводы и примеры
- •2.3.4. Сечение перехода, коэффициенты поглощения и усиления
- •2.4, Спонтанное излучение
- •2.4 Л. Полуклассический подход
- •2.4.2. Квантовоэлектродинамический подход
- •2.4.3. Термодинамический подход Эйнштейна
- •2.4.4. Связь между спонтанным временем жизни
- •Ол *споит
- •2.4.5, Заключительные замечания
- •2.5. Безызлучательная релаксация [11]
- •2.6. Насыщение
- •2.6.1. Насыщение поглощения; однородно уширенная линия
- •2.6.3. Неоднородно уширенная линия
- •2.7. Релаксация многоатомной системы
- •2.7.1. Захват излучения
- •2.7.2. Сверхизлучение и суперлюминесценция
- •2,8. Вырожденные уровни
- •2.9. Молекулярные системы
- •2,9,1. Энергетические уровни молекул
- •2.9.2. Заселенность уровней при тепловом равновесии
- •2.9.3. Излучательные и безызлучательные переходы
- •2.9.4. Квантовомеханический расчет вероятностей
- •Литература
- •3.1. Введение
- •3.2. Оптическая накачка [1, 2]
- •3.2.1. Кпд накачки
- •3,2.2. Излучательная эффективность и эффективность передачи1)
- •3,2.5. Заключительные замечания
- •3.3. Электрическая накачка
- •3.3.1. Физические свойства газовых разрядов [10—12]
- •3.3.2. Возбуждение электронным ударом
- •3.3.2.1. Сечение электронного удара [13]
- •3.3.2.2. Распределение энергии электронов
- •3.3.2.4. Уравнение ионизационного равновесия
- •3.3.2.5. Вычисление скорости накачки
- •3.3.3. Возбуждение посредством (около)резонансной
- •3J1. Покажите, что упругие столкновения встречаются значительно более
- •3.12. Теория амбиполярной диффузии дает следующее соотношение между электронной температурой т„ и произведением pD:
- •Литература
- •4.1. Введение
- •4.2. Некоторые разделы геометрической и волновой оптики
- •4.2.1. Матричная формулировка геометрической оптики [1]
- •4.2.2. Интерферометр Фабри—Перо [2]
- •4.2.3. Многослойные диэлектрические покрытия [3, 4]
- •Падают пучок
- •Отраженный
- •4.3. Время жизни фотона и добротность резонатора
- •4.4. Плоскопараллельный резонатор
- •4.4.1. Приближенная теория
- •4.4.2. Теория Фокса и Ли
- •4,5, Конфокальный резонатор [8]
- •4.6. Распространение гауссова пучка
- •Волны (б).
- •4.7. Обобщенный сферический резонатор [8]
- •4.7.1. Амплитуды мод
- •4.7.2. Резонансные частоты и дифракционные потери
- •4.7.3. Условие устойчивости
- •1 Положительная
- •(Кпршщтщшт ветвь
- •Отрицательная йетвь
- •4.8. Неустойчивые резонаторы [14, 15]
- •4.8.1. Геометрическое описание
- •4.8.2. Описание с помощью волновой оптики
- •4.8.3. Достоинства и недостатки неустойчивых резонаторов
- •4.8.4. Неустойчивые резонаторы с переменным коэффициентом отражения
- •Литература
- •5Л. Введение
- •5.2. Скоростные уравнения [2, 3]
- •5.2.1. Четырехуровневый лазер
- •5.2.2. Трехуровневый лазер
- •5.3. Непрерывный режим работы лазера
- •5.3.1. Четырехуровневый лазер
- •5.3.2. Трехуровневый лазер
- •5.3.3. Оптимальная связь на выходе лазера [7]
- •5.3.4. Перестройка частоты генерации лазера
- •5*3.5. Одномодовая и многомодовая генерация
- •5.3S.L Причины возникновения многоходовой генерации
- •5.3.5.2. Одномодовый режим генерации
- •5*3.6. Два числовых примера
- •5.3.8. Провал Лэмба и активная стабилизация
- •5.4, Нестационарный режим работы лазера
- •5.4Л, Релаксационные колебания в одномодовых лазерах
- •5.4.2, Пичковый режим многомодовых лазеров
- •5.4,3. Модуляция добротности [21]
- •5.4.3.1. Методы модуляции добротности
- •Дисррскшрозиитт пучок
- •5.4.3.2. Режимы генерации
- •5.4.3.4. Числовой пример
- •5.4.4. Модуляция усиления
- •5.4.5. Синхронизация мод [26, 27]
- •5.4Mj. Методы синхронизации мод
- •Машцштшйсн поглотитель
- •5.4.5.2. Лазерные системы с сихронизацией мод
- •5.4.6. Разгрузка резонатора
- •Выходной пучок
- •Ахтпшная среда
- •Дифрагированные пучки
- •5.5. Заключительные замечания
- •Литература
- •5. Непрерывный и нестационарный режимы работы лазеров
- •6.2. Твердотельные лазеры
- •6.2.1. Рубиновый лазер [1]
- •6.2.2. Неодимовые лазеры [4—6]
- •6.2.2.1. Nd : yag-лазер
- •6.2X2. Стекло с неодимом [7]
- •6.2.3. Лазер на александрите [8]
- •6.3.1. Лазеры на нейтральных атомах
- •6.Зал. Гелий-неоновые лазеры
- •6.3.1.2. Лазеры на парах меди и золота [12]
- •6.3,2. Ионные лазеры
- •6,3.2.1. Аргоновый лазер [13, 14]
- •Метастабитные уровни
- •6.3.3. Молекулярные газовые лазеры
- •6,3.3.3. Азотный лазер [21]
- •6.3.3.4. Эксимерные лазеры [22]
- •6.4. Жидкостные лазеры (лазеры на красителях) [23]
- •6.4.1. Фотофизические свойства органических красителей
- •Синметные Тршетные состояния состояния
- •6,4.2, Параметры лазеров на красителях
- •Модулированной добротностью.
- •Зеркало накачки
- •6.5. Химические лазеры [26f 27]
- •6.5.1. Лазер на hf
- •6.6. Полупроводниковые лазеры [28]
- •6.6.1.3. Излучательные и безызлучательные переходы
- •6.61.4. Квазиуровни Ферми
- •6.6.2.1. Лазер на гомопереходе
- •6.6.2.2. Лазер на двойном гетеропереходе
- •6*6.4. Применения полупроводниковых лазеров
- •6.6.5. Упрощенная теория полупроводникового лазера
- •6.7. Лазеры на центрах окраски [37]
- •3EpKpj7i? с „высокой
- •I V/ ospxcuw Сатрираше rtrtacmuxxti
- •6,8. Лазер на свободных электронах [3.8]
- •6.9. Рентгеновские лазеры
- •6.10. Сводка параметров
- •Назовите хотя бы четыре лазера, длины волн которых попадают в ик-область спектра.
- •Вычислите ширину лэмбовского провала для с02-лазера с продольной прокачкой и сравните ее с доплеровской шириной.
- •Литература
- •7.1. Введение
- •7.2. Монохроматичность
- •7.3. Комплексное представление полей
- •7,4. Статистические свойства лазерного излучения и излучения тепловых источников
- •7.5. Когерентность первого порядка [3]
- •7.5.1. Степень пространственной и временной когерентности
- •7.5.2. Измерение пространственной и временной когерентностей
- •Сзетазал волна
- •7.5.3. Соотношение между временной когерентностью и монохроматичностью
- •7.5.5. Пространственная и временная когерентность одномодовых и многомодовых лазеров
- •7.6. Направленность
- •7.6.1. Пучки с полной пространственной когерентностью
- •(Лампы).
- •7.7. Лазерная спекл-картина [6, 7]
- •7.8. Яркость
- •7.9. Сравнение лазерного и теплового излучений
- •Литература
- •Преобразование лазерного пучка: распространение, усиление, преобразование частоты, сжатие импульса
- •8.1. Введение
- •8.2. Преобразование в пространстве; распространение гауссова Пучка
- •8.3. Преобразование амплитуды: лазерное усиление [6—8]
- •8.4. Преобразование частоты; генерация второй гармоники и параметрическая генерация [9-11]
- •8.4.1. Физическая картина
- •Химическая формула
- •8.4,1.2, Параметрическая генерация
- •8*4,2. Аналитическое рассмотрение
- •8.4.2.1. Параметрическая генерация
- •2Ш ф exp[/(aJte)l (8.90а)
- •8.5. Временное преобразование; сжатие импульса
- •6;Ic Дифракаматая решетка Сжатый импульс " о, г т д ифрякцаонноя решетки Одн&уюдззсе оптическое волокно
- •6 Пс примерно в 10 раз.
- •Литература
- •Полуклассическая теория взаимодействия излучения с веществом
- •Пространственно-зависимые скоростные уравнения
- •Теория активной синхронизации мод для однородно уширенной линии
- •Литература
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Периодическая последова-
- •При замене суммы интегралом получается не тельность импульсов, а одиночный импульс.
- •Глава 6
- •Глава 7
- •Только в 2 раза. .
- •Глава 8
- •Введение
- •5.3. Непрерывный режим работы лазера 245 .
- •6. F Полупроводниковые лазеры г28м
Литература
Reif R.t Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York, 1965, ch. 9,
Paniell R. //., PuthoffH. E., Fundamentals of Quantum Electronics, Wiley, New York, 1969, ch, 2., sees 2,1—2.3. [Имеется перевод:
хоф Г. Основы квантовой электроники. - М.: Мир, 1972.]
Messiah A.f Quantum Mechanics, North-Holland, Amsterdam, 1961, v. 1., pp, 112, 113. [Имеется перевод: Мессий Л. Квантовая механика. Том. 1.— М.: Наука, 1978.]
Stratton J. /U Electromagnetic Theory, McGraw-Hill, New York, 1941, pp. 431-438. [Имеется перевод: Стрэттон Дж. Теория электромагнетизма. -М. - Л.: Гостехиздат, 1964.]
Pantell R. #., Puthoff Н. Fundamentals of Quantum Electronics, Wiley, New York, 1969, ch 6. [Имеется перевод: Пйнтел P., Путхоф Г. Основы квантовой электроники. — М.: Мир, 1972.]
Louisell W., Radiation and Noise ni Quantum Electronics, McGraw-Hill, New York, 1964, ch. 4. [Имеется перевод; Люиселл У. Излучение и шумы в квантовой электронике. - М.: Наука, 1972.1
Hoistein Т., Phys. Rev., 72, 1212 (1947).
Dicke R. Я., Phvs. Rev., 93, 99 (1954),
BonifacioR., Luglato L., Phys. Rev., All, 1507 (1975).
LinfordG. J. et a/, AppL Opt., 13, 379 (1974).
Radiationless Transitions (ed. F. J. Fong), Springer-Verlag, Berlin, 1976.
Louisell F., Radiation and Noise in Quantum Electronics McGraw-Hill, New York, 1964, eh. 5. [Имеется перевод: Люиселл У. Излучение и шумы в квантовой электронике. - М: Наука, 1972.]
Heitler W., The Quantum Theory of Radiation, 4th edn., Oxford University Press, London, 1953, pp. 181—189. [Имеется перевод 3-го изд.: Гайтлер В. Квантовая теория излучения. — М.: ИЛ, 1956.]
Kuhn К G., Atomic Spectra, 2nd edn., Longmans, Green, London, 1969, ch. VII.
ShawlowA, L. — In: Advances in Quantum Electronics (ed. J, R. Singer), Columbia University Press, New York, 1961, pp. 50—62.
Siegman A. E., An Introduction to Lasers and Masers, McGraw-Hill, New York, 1971, p. 362.
Thome A. P., Spectrophysics, Chapman and Hall, London, 1974, sec. 2.14— 2.19.
Pant ell R. Я., PuthoffH. E.y Fundamentals of Quantum Electronics, Wiley, New York, 1969, pp. 40—41, 60, 62, and Appendix 4. [Имеется перевод: Пантел Я., ПутыфТ, Основы квантовой электроники. - М.; Мир, 1972.]
Birks J. В., Photophysics of Aromatic Molecules, Wiley-Interscience, New York, 1970, sec. 11.9.
Herzberg G., Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Company, Princeton, New Jersey, 1968, p. 122, Fig. 51.
3
Процессы накачки
3.1. Введение
В гл. 1 мы показали, что процесс, который переводит атомы с уровня 1 на уровень 3 (для трехуровневого лазера; см. рис. 1.4, а) или с уровня 0 на уровень 3 (для чстырехуровне- вого лазера; см. рис. называется Накачка осу-
ществляется, как правило, одним из следующих двух способов: оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных (например, для рубинового или неодимового) или жидкостных (например, на красителе) лазеров. Механизмы уширения линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно мы
имеем дело не с накачкой уровней, а с полос
щения. Следовательно, эти полосы поглощают заметную долю (обычно широкополосного) света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что у них спектральная ширина линий поглощения невелика, а лампы для накачки дают широкополосное излучение, осуществить оптическую накачку довольно трудно. Замечательным исключением, которое следует
отметить, является лазер с оптической накачкой, ког-
да пары Cs возбуждаются лампой, содержащей Не при низком давлении. В данном случае условия для оптической накачки вполне благоприятны, поскольку интенсивная линия излучения Не с Я ж 390 нм (достаточно узкая благодаря низкому давле- нию) совпадает с линиями поглощения Cs. Фактически этот ла- зер представляет интерес лишь в историческом плане, как одна из первых предложенных лазерных схем. Кроме того, его реа- лизация на практике является весьма поскольку пары
Cs, которые для обеспечения достаточного давления газа необходимо поддерживать при температуре 175 °С, представляют собой весьма агрессивную среду. Оптическую накачку весьма эффективно можно было бы использовать для полупроводникевых лазеров. Дело в том, что у полупроводников имеется полоса сильного поглощения. Однако применение в данном случае электрической накачки оказывается более удобным, поскольку через полупроводник (обычно в форме р — п- или р — i — п-диода) очень легко проходит электрический ток.
Два упомянутых выше процесса накачки (оптической и электрической) не исчерпывают всех возможных методов накачки лазеров, Например, необходимая инверсия может быть создана также с помощью соответствующей химической реакции {химическая накачка). Необходимо упомянуть здесь два достойных внимания вида химической накачки: 1) ассоциативная реакция, А+В-^АВ*, ведущая к образованию молекулы АВ в возбужденном колебательном состоянии, и 2) диссоциативная реакция, АВ + ftv-*-A + В*, ведущая к образованию частицы В (атома или молекулы) в возбужденном состоянии.
Другим способом накачки газовой молекулы, который может быть достаточно эффективным, является сверхзвуковое расширение газовой смеси, содержащей данную молекулу (газодинамическая накачка). Поскольку эта схема накачки требует
довольно долгого и подробного обсуждения, мы отложим ее
рассмотрение до гл. 6.
Чтобы закончить эти вводные замечания, следует упомянуть о специальном виде оптической накачки, когда лазерный луч используется для накачки другого лазера (лазерная накачка). Свойства направленности лазерного пучка делают его очень удобным для накачки другого лазера, причем здесь не требуется специальных осветителей, как в случае (некогерентной) оптической накачки. Такая накачка является довольно простой, и в дальнейшем мы ее не будем рассматривать. Хотелось бы лишь здесь отметить, что благодаря монохроматичности излучения лазера накачки ее применение не ограничивается лишь твердотельными и жидкостными лазерами (как в случае некогерентной оптической накачки), но ее можно также использовать для
накачки газовых лазеров. В данном случае линия, излучаемая накачивающим лазером, должна, разумеется, совпадать с линией поглощения накачиваемого лазера. Это применяется, например, для накачки большинства газовых лазеров дальнего ИК-Диапазона (скажем, таких лазеров, в которых используются метиловый спирт СНзОН в виде паров) с помощью излучения соответствующей длины волны С02-лазера.
Выше мы уже отмечали, что в данной главе мы рассмотрим лишь оптическую и электрическую накачки. В каждом конкретном случае обсудим физические механизмы, лежащие в основе
изучаемого процесса, а также опишем в общих чертах схему расчета скорости накачки WPlопределяемой выражением (1.10).