
- •Isbn 5-03-001053-х (русск.) isbn 0-306-42967-5 (англ.)
- •1.1. Спонтанное и вынужденное излучение; поглощение
- •1.1.1. Спонтанное излучение (рис. L.Lf а)
- •1.1.2. Вынужденное излучение (рис. 1л?б)
- •1.2. Принцип работы лазера
- •1.3. Схемы накачки.
- •БН&лиогека вшшгездячшсогв институт з
- •1.4. Свойства лазерных пучков
- •1.4.1. Монохроматичность
- •1.4.2. Когерентность
- •1.4.3. Направленность
- •Электромагнитная Волна
- •1*4.4. Яркость
- •1.4.5. Импульсы малой длительности
- •1.5. Структура книги
- •2.1. Введение
- •2.2. Теория излучения черного тела [1]
- •2.3. Поглощение и вынужденное излучение
- •2,3.1. Вероятности поглощения и вынужденного излучения
- •2.3.3. Механизм уширения линии
- •2.3.3.1. Однородное ушарение
- •2.3.3.2. Неоднородное уширение
- •2.3,3.3. Выводы и примеры
- •2.3.4. Сечение перехода, коэффициенты поглощения и усиления
- •2.4, Спонтанное излучение
- •2.4 Л. Полуклассический подход
- •2.4.2. Квантовоэлектродинамический подход
- •2.4.3. Термодинамический подход Эйнштейна
- •2.4.4. Связь между спонтанным временем жизни
- •Ол *споит
- •2.4.5, Заключительные замечания
- •2.5. Безызлучательная релаксация [11]
- •2.6. Насыщение
- •2.6.1. Насыщение поглощения; однородно уширенная линия
- •2.6.3. Неоднородно уширенная линия
- •2.7. Релаксация многоатомной системы
- •2.7.1. Захват излучения
- •2.7.2. Сверхизлучение и суперлюминесценция
- •2,8. Вырожденные уровни
- •2.9. Молекулярные системы
- •2,9,1. Энергетические уровни молекул
- •2.9.2. Заселенность уровней при тепловом равновесии
- •2.9.3. Излучательные и безызлучательные переходы
- •2.9.4. Квантовомеханический расчет вероятностей
- •Литература
- •3.1. Введение
- •3.2. Оптическая накачка [1, 2]
- •3.2.1. Кпд накачки
- •3,2.2. Излучательная эффективность и эффективность передачи1)
- •3,2.5. Заключительные замечания
- •3.3. Электрическая накачка
- •3.3.1. Физические свойства газовых разрядов [10—12]
- •3.3.2. Возбуждение электронным ударом
- •3.3.2.1. Сечение электронного удара [13]
- •3.3.2.2. Распределение энергии электронов
- •3.3.2.4. Уравнение ионизационного равновесия
- •3.3.2.5. Вычисление скорости накачки
- •3.3.3. Возбуждение посредством (около)резонансной
- •3J1. Покажите, что упругие столкновения встречаются значительно более
- •3.12. Теория амбиполярной диффузии дает следующее соотношение между электронной температурой т„ и произведением pD:
- •Литература
- •4.1. Введение
- •4.2. Некоторые разделы геометрической и волновой оптики
- •4.2.1. Матричная формулировка геометрической оптики [1]
- •4.2.2. Интерферометр Фабри—Перо [2]
- •4.2.3. Многослойные диэлектрические покрытия [3, 4]
- •Падают пучок
- •Отраженный
- •4.3. Время жизни фотона и добротность резонатора
- •4.4. Плоскопараллельный резонатор
- •4.4.1. Приближенная теория
- •4.4.2. Теория Фокса и Ли
- •4,5, Конфокальный резонатор [8]
- •4.6. Распространение гауссова пучка
- •Волны (б).
- •4.7. Обобщенный сферический резонатор [8]
- •4.7.1. Амплитуды мод
- •4.7.2. Резонансные частоты и дифракционные потери
- •4.7.3. Условие устойчивости
- •1 Положительная
- •(Кпршщтщшт ветвь
- •Отрицательная йетвь
- •4.8. Неустойчивые резонаторы [14, 15]
- •4.8.1. Геометрическое описание
- •4.8.2. Описание с помощью волновой оптики
- •4.8.3. Достоинства и недостатки неустойчивых резонаторов
- •4.8.4. Неустойчивые резонаторы с переменным коэффициентом отражения
- •Литература
- •5Л. Введение
- •5.2. Скоростные уравнения [2, 3]
- •5.2.1. Четырехуровневый лазер
- •5.2.2. Трехуровневый лазер
- •5.3. Непрерывный режим работы лазера
- •5.3.1. Четырехуровневый лазер
- •5.3.2. Трехуровневый лазер
- •5.3.3. Оптимальная связь на выходе лазера [7]
- •5.3.4. Перестройка частоты генерации лазера
- •5*3.5. Одномодовая и многомодовая генерация
- •5.3S.L Причины возникновения многоходовой генерации
- •5.3.5.2. Одномодовый режим генерации
- •5*3.6. Два числовых примера
- •5.3.8. Провал Лэмба и активная стабилизация
- •5.4, Нестационарный режим работы лазера
- •5.4Л, Релаксационные колебания в одномодовых лазерах
- •5.4.2, Пичковый режим многомодовых лазеров
- •5.4,3. Модуляция добротности [21]
- •5.4.3.1. Методы модуляции добротности
- •Дисррскшрозиитт пучок
- •5.4.3.2. Режимы генерации
- •5.4.3.4. Числовой пример
- •5.4.4. Модуляция усиления
- •5.4.5. Синхронизация мод [26, 27]
- •5.4Mj. Методы синхронизации мод
- •Машцштшйсн поглотитель
- •5.4.5.2. Лазерные системы с сихронизацией мод
- •5.4.6. Разгрузка резонатора
- •Выходной пучок
- •Ахтпшная среда
- •Дифрагированные пучки
- •5.5. Заключительные замечания
- •Литература
- •5. Непрерывный и нестационарный режимы работы лазеров
- •6.2. Твердотельные лазеры
- •6.2.1. Рубиновый лазер [1]
- •6.2.2. Неодимовые лазеры [4—6]
- •6.2.2.1. Nd : yag-лазер
- •6.2X2. Стекло с неодимом [7]
- •6.2.3. Лазер на александрите [8]
- •6.3.1. Лазеры на нейтральных атомах
- •6.Зал. Гелий-неоновые лазеры
- •6.3.1.2. Лазеры на парах меди и золота [12]
- •6.3,2. Ионные лазеры
- •6,3.2.1. Аргоновый лазер [13, 14]
- •Метастабитные уровни
- •6.3.3. Молекулярные газовые лазеры
- •6,3.3.3. Азотный лазер [21]
- •6.3.3.4. Эксимерные лазеры [22]
- •6.4. Жидкостные лазеры (лазеры на красителях) [23]
- •6.4.1. Фотофизические свойства органических красителей
- •Синметные Тршетные состояния состояния
- •6,4.2, Параметры лазеров на красителях
- •Модулированной добротностью.
- •Зеркало накачки
- •6.5. Химические лазеры [26f 27]
- •6.5.1. Лазер на hf
- •6.6. Полупроводниковые лазеры [28]
- •6.6.1.3. Излучательные и безызлучательные переходы
- •6.61.4. Квазиуровни Ферми
- •6.6.2.1. Лазер на гомопереходе
- •6.6.2.2. Лазер на двойном гетеропереходе
- •6*6.4. Применения полупроводниковых лазеров
- •6.6.5. Упрощенная теория полупроводникового лазера
- •6.7. Лазеры на центрах окраски [37]
- •3EpKpj7i? с „высокой
- •I V/ ospxcuw Сатрираше rtrtacmuxxti
- •6,8. Лазер на свободных электронах [3.8]
- •6.9. Рентгеновские лазеры
- •6.10. Сводка параметров
- •Назовите хотя бы четыре лазера, длины волн которых попадают в ик-область спектра.
- •Вычислите ширину лэмбовского провала для с02-лазера с продольной прокачкой и сравните ее с доплеровской шириной.
- •Литература
- •7.1. Введение
- •7.2. Монохроматичность
- •7.3. Комплексное представление полей
- •7,4. Статистические свойства лазерного излучения и излучения тепловых источников
- •7.5. Когерентность первого порядка [3]
- •7.5.1. Степень пространственной и временной когерентности
- •7.5.2. Измерение пространственной и временной когерентностей
- •Сзетазал волна
- •7.5.3. Соотношение между временной когерентностью и монохроматичностью
- •7.5.5. Пространственная и временная когерентность одномодовых и многомодовых лазеров
- •7.6. Направленность
- •7.6.1. Пучки с полной пространственной когерентностью
- •(Лампы).
- •7.7. Лазерная спекл-картина [6, 7]
- •7.8. Яркость
- •7.9. Сравнение лазерного и теплового излучений
- •Литература
- •Преобразование лазерного пучка: распространение, усиление, преобразование частоты, сжатие импульса
- •8.1. Введение
- •8.2. Преобразование в пространстве; распространение гауссова Пучка
- •8.3. Преобразование амплитуды: лазерное усиление [6—8]
- •8.4. Преобразование частоты; генерация второй гармоники и параметрическая генерация [9-11]
- •8.4.1. Физическая картина
- •Химическая формула
- •8.4,1.2, Параметрическая генерация
- •8*4,2. Аналитическое рассмотрение
- •8.4.2.1. Параметрическая генерация
- •2Ш ф exp[/(aJte)l (8.90а)
- •8.5. Временное преобразование; сжатие импульса
- •6;Ic Дифракаматая решетка Сжатый импульс " о, г т д ифрякцаонноя решетки Одн&уюдззсе оптическое волокно
- •6 Пс примерно в 10 раз.
- •Литература
- •Полуклассическая теория взаимодействия излучения с веществом
- •Пространственно-зависимые скоростные уравнения
- •Теория активной синхронизации мод для однородно уширенной линии
- •Литература
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Периодическая последова-
- •При замене суммы интегралом получается не тельность импульсов, а одиночный импульс.
- •Глава 6
- •Глава 7
- •Только в 2 раза. .
- •Глава 8
- •Введение
- •5.3. Непрерывный режим работы лазера 245 .
- •6. F Полупроводниковые лазеры г28м
2.3.4. Сечение перехода, коэффициенты поглощения и усиления
Вычислив вероятность перехода W. можно теперь перейти к определению и расчету других параметров, которые часто применяются для описания данного перехода.
Первым из таких параметров мы рассмотрим сечение перехода 0, которое вскользь уже обсуждалось в главе 1 [см. соотношения (1.4) и (1.6)]. Мы нашли, что в случае однородной плоской волны вероятность перехода пропорциональна интенсивности плоской волны, поэтому сечение перехода можно определить следующим образом:
а = W/F; (2.82)
здесь F = //Av- плотность потока фотонов падающей электромагнитной волны. Из (2.40) мы затем получаем выражения для ст:
Из этого выражения видно, что 0 зависит только от параметров среды (|ц|2 и gt) и частоты v падающей волны. Таким образом, для описания процесса взаимодействия необходимо
знать лишь зависимость сечения сх от частоты v. Поэтому сечение перехода о является очень важным и широко применяемым параметром. Физическое объяснение популярности этого
параметра можно получить из уравнения (1.7). Для простоты
предположим, что все атомы находятся на нижнем энергетическом уровне, т. е. JV* =0и^,= N, (Nt - суммарная населенность системы). При этом из (1.7) получаем
dF = -oNtFdz. (2.84)
Предположим теперь, что каждому атому можно поставить в соответствие эффективное сечение поглощения фотонов оа в том смысле, что если фотон попадает в это сечение, то он будет поглощен атомом (рис. 2Л0). Если площадь поперечного сечения электромагнитной волны в среде обозначить через 5, то число освещенных волной атомов среды в слое толщиной dz (см. также рис. 1.2) равно NtSdz и тогда полное сечение поглощения будет равно aaNiS dz. Следовательно, относительное изменение числа фотонов (dF/F) в слое толщиной dz среды равно
dF/F= - aaNtSdzjS. (2.85)
Из
сравнения уравнений (2.85) и (2.84) видно,
что О этому в соответствии с данным
выше определением
0 можно придать смысл эффективного сечения поглощения.
Взаимодействие излучения с веществом можно описывать по-другому, определив коэффициент а с помощью выражения
a=o(Ni— N2). (2.86)
Если JVi > N2f то величина а называется коэффициентом поглощения. Воспользовавшись выражением (2.83), получаем
по-
величине
2я
а
=
здд^
М
— N2)
|
(I |2
vgt
(Av).
(2.87)
Поскольку а зависит от населенностей двух уровней, это не самый подходящий параметр для описания взаимодействия в тех случаях, когда населенности уровней изменяются, как, например в лазере. Однако достоинством данного параметра является то, что он может быть непосредственно измерен. Действительно, из выражений (1.7) и (2.86) следует, что dp s=s —aF dz. Поэтому, отношение плотности потока фотонов, прошедшего в среду на глубину /, к плотности падающего потока фотонов равно F(l)fF(0)= ехр(—at). Экспериментальные
измерения этого отношения при использовании достаточно монохроматического излучения дают значение а для этой конкретной длины волны падающего света. Соответствующее сечение перехода получается из выражения (2.86), если известны
населенности Ni и N2. В случае, когда среда находится в термодинамическом равновесии, N] и можно определить (если известна полная населенность Af* — N\ + М2) с помощью выражения (1.8). Прибор для измерения коэффициента поглощения а называется абсорбционным спектрофотометром (спектрофотометром поглощения). Заметим, однако, что нельзя производить измерение поглощения перехода, уровень 1 которого не заселен. Такая ситуация возникает, например, когда уровень 1 не является основным и его энергия превышает энергию основного уровня на величину, много большую, чем kT. В качестве последнего наблюдения заметим, что если N2 > Nu то коэффициент поглощения а, определяемый с помощью выражения (2.86), становится отрицательным и волна в среде будет, разумеется, усиливаться, а не поглощаться. В этом случае обычно вводят новую величину
ag = _се = 0 (ЛГ2 - ЛГ,), (2.88)
которая является положительной и называется коэффициентом усиления. Определим также величину
g =agl, (2.88а)
где / — длина активной среды. Величина g называется (логарифмическим) усилением среды.
Теперь подведем итоги нашего рассмотрения в данном разделе. Мы ввели следующие три характеризующие переход параметра: W, а и а. Они представляют три различных способа описания явления поглощения и вынужденного излучения. Относительные достоинства каждого из этих параметров состоят в следующем: 1) вероятность перехода W имеет простой физический смысл [см. выражения (1.3) и (1.5)], и ее можно непосредственно получить из квантовомеханического вычисления; 2) сечение перехода 0 зависит исключительно от свойств данной среды; 3) коэффициент поглощения а — это параметр, который во многих случаях можно непосредственно измерить в эксперименте.