
- •Isbn 5-03-001053-х (русск.) isbn 0-306-42967-5 (англ.)
- •1.1. Спонтанное и вынужденное излучение; поглощение
- •1.1.1. Спонтанное излучение (рис. L.Lf а)
- •1.1.2. Вынужденное излучение (рис. 1л?б)
- •1.2. Принцип работы лазера
- •1.3. Схемы накачки.
- •БН&лиогека вшшгездячшсогв институт з
- •1.4. Свойства лазерных пучков
- •1.4.1. Монохроматичность
- •1.4.2. Когерентность
- •1.4.3. Направленность
- •Электромагнитная Волна
- •1*4.4. Яркость
- •1.4.5. Импульсы малой длительности
- •1.5. Структура книги
- •2.1. Введение
- •2.2. Теория излучения черного тела [1]
- •2.3. Поглощение и вынужденное излучение
- •2,3.1. Вероятности поглощения и вынужденного излучения
- •2.3.3. Механизм уширения линии
- •2.3.3.1. Однородное ушарение
- •2.3.3.2. Неоднородное уширение
- •2.3,3.3. Выводы и примеры
- •2.3.4. Сечение перехода, коэффициенты поглощения и усиления
- •2.4, Спонтанное излучение
- •2.4 Л. Полуклассический подход
- •2.4.2. Квантовоэлектродинамический подход
- •2.4.3. Термодинамический подход Эйнштейна
- •2.4.4. Связь между спонтанным временем жизни
- •Ол *споит
- •2.4.5, Заключительные замечания
- •2.5. Безызлучательная релаксация [11]
- •2.6. Насыщение
- •2.6.1. Насыщение поглощения; однородно уширенная линия
- •2.6.3. Неоднородно уширенная линия
- •2.7. Релаксация многоатомной системы
- •2.7.1. Захват излучения
- •2.7.2. Сверхизлучение и суперлюминесценция
- •2,8. Вырожденные уровни
- •2.9. Молекулярные системы
- •2,9,1. Энергетические уровни молекул
- •2.9.2. Заселенность уровней при тепловом равновесии
- •2.9.3. Излучательные и безызлучательные переходы
- •2.9.4. Квантовомеханический расчет вероятностей
- •Литература
- •3.1. Введение
- •3.2. Оптическая накачка [1, 2]
- •3.2.1. Кпд накачки
- •3,2.2. Излучательная эффективность и эффективность передачи1)
- •3,2.5. Заключительные замечания
- •3.3. Электрическая накачка
- •3.3.1. Физические свойства газовых разрядов [10—12]
- •3.3.2. Возбуждение электронным ударом
- •3.3.2.1. Сечение электронного удара [13]
- •3.3.2.2. Распределение энергии электронов
- •3.3.2.4. Уравнение ионизационного равновесия
- •3.3.2.5. Вычисление скорости накачки
- •3.3.3. Возбуждение посредством (около)резонансной
- •3J1. Покажите, что упругие столкновения встречаются значительно более
- •3.12. Теория амбиполярной диффузии дает следующее соотношение между электронной температурой т„ и произведением pD:
- •Литература
- •4.1. Введение
- •4.2. Некоторые разделы геометрической и волновой оптики
- •4.2.1. Матричная формулировка геометрической оптики [1]
- •4.2.2. Интерферометр Фабри—Перо [2]
- •4.2.3. Многослойные диэлектрические покрытия [3, 4]
- •Падают пучок
- •Отраженный
- •4.3. Время жизни фотона и добротность резонатора
- •4.4. Плоскопараллельный резонатор
- •4.4.1. Приближенная теория
- •4.4.2. Теория Фокса и Ли
- •4,5, Конфокальный резонатор [8]
- •4.6. Распространение гауссова пучка
- •Волны (б).
- •4.7. Обобщенный сферический резонатор [8]
- •4.7.1. Амплитуды мод
- •4.7.2. Резонансные частоты и дифракционные потери
- •4.7.3. Условие устойчивости
- •1 Положительная
- •(Кпршщтщшт ветвь
- •Отрицательная йетвь
- •4.8. Неустойчивые резонаторы [14, 15]
- •4.8.1. Геометрическое описание
- •4.8.2. Описание с помощью волновой оптики
- •4.8.3. Достоинства и недостатки неустойчивых резонаторов
- •4.8.4. Неустойчивые резонаторы с переменным коэффициентом отражения
- •Литература
- •5Л. Введение
- •5.2. Скоростные уравнения [2, 3]
- •5.2.1. Четырехуровневый лазер
- •5.2.2. Трехуровневый лазер
- •5.3. Непрерывный режим работы лазера
- •5.3.1. Четырехуровневый лазер
- •5.3.2. Трехуровневый лазер
- •5.3.3. Оптимальная связь на выходе лазера [7]
- •5.3.4. Перестройка частоты генерации лазера
- •5*3.5. Одномодовая и многомодовая генерация
- •5.3S.L Причины возникновения многоходовой генерации
- •5.3.5.2. Одномодовый режим генерации
- •5*3.6. Два числовых примера
- •5.3.8. Провал Лэмба и активная стабилизация
- •5.4, Нестационарный режим работы лазера
- •5.4Л, Релаксационные колебания в одномодовых лазерах
- •5.4.2, Пичковый режим многомодовых лазеров
- •5.4,3. Модуляция добротности [21]
- •5.4.3.1. Методы модуляции добротности
- •Дисррскшрозиитт пучок
- •5.4.3.2. Режимы генерации
- •5.4.3.4. Числовой пример
- •5.4.4. Модуляция усиления
- •5.4.5. Синхронизация мод [26, 27]
- •5.4Mj. Методы синхронизации мод
- •Машцштшйсн поглотитель
- •5.4.5.2. Лазерные системы с сихронизацией мод
- •5.4.6. Разгрузка резонатора
- •Выходной пучок
- •Ахтпшная среда
- •Дифрагированные пучки
- •5.5. Заключительные замечания
- •Литература
- •5. Непрерывный и нестационарный режимы работы лазеров
- •6.2. Твердотельные лазеры
- •6.2.1. Рубиновый лазер [1]
- •6.2.2. Неодимовые лазеры [4—6]
- •6.2.2.1. Nd : yag-лазер
- •6.2X2. Стекло с неодимом [7]
- •6.2.3. Лазер на александрите [8]
- •6.3.1. Лазеры на нейтральных атомах
- •6.Зал. Гелий-неоновые лазеры
- •6.3.1.2. Лазеры на парах меди и золота [12]
- •6.3,2. Ионные лазеры
- •6,3.2.1. Аргоновый лазер [13, 14]
- •Метастабитные уровни
- •6.3.3. Молекулярные газовые лазеры
- •6,3.3.3. Азотный лазер [21]
- •6.3.3.4. Эксимерные лазеры [22]
- •6.4. Жидкостные лазеры (лазеры на красителях) [23]
- •6.4.1. Фотофизические свойства органических красителей
- •Синметные Тршетные состояния состояния
- •6,4.2, Параметры лазеров на красителях
- •Модулированной добротностью.
- •Зеркало накачки
- •6.5. Химические лазеры [26f 27]
- •6.5.1. Лазер на hf
- •6.6. Полупроводниковые лазеры [28]
- •6.6.1.3. Излучательные и безызлучательные переходы
- •6.61.4. Квазиуровни Ферми
- •6.6.2.1. Лазер на гомопереходе
- •6.6.2.2. Лазер на двойном гетеропереходе
- •6*6.4. Применения полупроводниковых лазеров
- •6.6.5. Упрощенная теория полупроводникового лазера
- •6.7. Лазеры на центрах окраски [37]
- •3EpKpj7i? с „высокой
- •I V/ ospxcuw Сатрираше rtrtacmuxxti
- •6,8. Лазер на свободных электронах [3.8]
- •6.9. Рентгеновские лазеры
- •6.10. Сводка параметров
- •Назовите хотя бы четыре лазера, длины волн которых попадают в ик-область спектра.
- •Вычислите ширину лэмбовского провала для с02-лазера с продольной прокачкой и сравните ее с доплеровской шириной.
- •Литература
- •7.1. Введение
- •7.2. Монохроматичность
- •7.3. Комплексное представление полей
- •7,4. Статистические свойства лазерного излучения и излучения тепловых источников
- •7.5. Когерентность первого порядка [3]
- •7.5.1. Степень пространственной и временной когерентности
- •7.5.2. Измерение пространственной и временной когерентностей
- •Сзетазал волна
- •7.5.3. Соотношение между временной когерентностью и монохроматичностью
- •7.5.5. Пространственная и временная когерентность одномодовых и многомодовых лазеров
- •7.6. Направленность
- •7.6.1. Пучки с полной пространственной когерентностью
- •(Лампы).
- •7.7. Лазерная спекл-картина [6, 7]
- •7.8. Яркость
- •7.9. Сравнение лазерного и теплового излучений
- •Литература
- •Преобразование лазерного пучка: распространение, усиление, преобразование частоты, сжатие импульса
- •8.1. Введение
- •8.2. Преобразование в пространстве; распространение гауссова Пучка
- •8.3. Преобразование амплитуды: лазерное усиление [6—8]
- •8.4. Преобразование частоты; генерация второй гармоники и параметрическая генерация [9-11]
- •8.4.1. Физическая картина
- •Химическая формула
- •8.4,1.2, Параметрическая генерация
- •8*4,2. Аналитическое рассмотрение
- •8.4.2.1. Параметрическая генерация
- •2Ш ф exp[/(aJte)l (8.90а)
- •8.5. Временное преобразование; сжатие импульса
- •6;Ic Дифракаматая решетка Сжатый импульс " о, г т д ифрякцаонноя решетки Одн&уюдззсе оптическое волокно
- •6 Пс примерно в 10 раз.
- •Литература
- •Полуклассическая теория взаимодействия излучения с веществом
- •Пространственно-зависимые скоростные уравнения
- •Теория активной синхронизации мод для однородно уширенной линии
- •Литература
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Периодическая последова-
- •При замене суммы интегралом получается не тельность импульсов, а одиночный импульс.
- •Глава 6
- •Глава 7
- •Только в 2 раза. .
- •Глава 8
- •Введение
- •5.3. Непрерывный режим работы лазера 245 .
- •6. F Полупроводниковые лазеры г28м
8.5. Временное преобразование; сжатие импульса
В этом разделе мы рассмотрим кратко явление сжатия импульса. Это явление — один из примеров многих типов временного преобразования, которому может быть подвергнут лазерный пучок до его применения на практике. Однако, прежде чем
приступить к такому преобразованию, имеет смысл сделать короткое отступление» чтобы напомнить такие вая скорость, групповая скорость и дисперсия групповой скоро-
сии светового импульса.
(8.98)
ассмотрим
среду, характеризующуюся конкретным
дисперсионным уравнением, т. е. данным
соотношением между волновым числом
к
и
частотой © (рис. 8.11). Это означает, что
электрическое поле плоской
линейно-поляризованной и монохроматической
электромагнитной волны с частотой
ш будет распространяться вдоль оси
г в соответствии с выражением £ ~ ~
ехр [/(cof
—
kz)]f
где
k
=
&(о>)
определяется дисперсионным уравнением
среды. Поскольку фаза волны равна
ф = <й/ — kzy
скорость данного фазового фронта будет такова, что элементарные изменения dt и временной
и пространственной координат
ш
должны
удовлетворять условию dj>
=
io dt—k
dz=0.
Отсюда
следует, что фазовый фронт движется
со скоростью
v^ = dzjdt = tufky (8.99)
которая называется фазовой скоростью волны. Рассмотрим теперь световой импульс, распространяющийся в среде, и пусть со0 и Дсо0—центральная частота и шн-рина соответствующего спектра
для импульса с
роким спектром.
(рис. 8.11, а). Предположим, что дисперсионное уравнение в пределах ширины линии До) может быть линеаризовано. Другими словами, запишем его следующим образом: к = k0 -^{dk/dio)^^ X
Х(о)—шо), где &о — волновое число, соответствующее частоте соо. В этом случае, выполняя преобразование Фурье электрического поля волны:
<Л?+Д<Л;,/2
Е (/, z)= ^ Аы ехр [/ (со/ — kz))d(u
(8.100)
и подставляя приведенное выше линейное соотношение для k в зависимости от со — ©о, получаем
ДШэ/2
E(t, z) — ехр [i (©</ — koZ)] ^ exp j i Д© \t — z \ i rfAco,
-Д<йо/2 — ~
(8,10.1)
где Aft) = со — too. Заметим, что после интегрирования получается функция переменной t— (dk/d&)z. Таким образом, выражение (8.101) можно представить в виде
Е (t, z)^A[t- (zfvgftxp [i (©^ - ftp*)], (8.102)
где Л — амплитуда волны или волнового пакета, ехр[*(©о£—
— kQz)] — несущая волна, a vg дается выражением
vg = (d<*/dk)kmku. (8.103)
Тот факт, что амплитуда волны является функцией переменной t—z/Vg, означает, что волновой пакет распространяется со скоростью Vg без изменения формы. Эта скорость называется групповой скоростью импульса, а ее величина в соответствии с (8Л03) определяется наклоном кривой зависимости ©(ft) в точке © s= ©0. Обратившись к выражению (8.102), заметим, что несущая волна импульса распространяется со скоростью и=щ/ко9 т. е. с фазовой скоростью непрерывной волны на частоте ©=©0. Заметим также, что в общем случае дисперсионного уравнения, представленного на рис. 8.11, а, фазовая скорость несущей волны отличается, вообще говоря, от групповой скорости. Посмотрим теперь, что происходит, когда в среде распространяются два импульса, имеющих ширины спектральных линий соответственно A(0i и Д©2 с центрами при ©i и ©2 (рис. 8.11, б). Если наклоны дисперсионной кривой на этих двух частотах имеют разные значения, то оба волновых пакета распространяются с различными групповыми скоростями vgl и 0g2. Таким образом, если максимумы обоих импульсов входят в среду одновременно, то после прохождения ими в среде расстояния L они становятся разделенными во времени на величину задержки
Дт<* = -jp = L [(-Ц-) — {ж)]' (8.104)
Если допустить, что дисперсионное уравнение в диапазоне частот ©1—©2 можно аппроксимировать параболой, то справедливым будет выражение (dk/d(d)2— (dk/d(o)\ + (cPft/rf©2)! (©2 —
— ©1) и, таким образом, величину Дт<* можно записать в виде
Дт„ = L (dtk/daPMab - «О. (8.105)
Рассмотрим теперь случай, когда световой импульс имеет столь большую ширину линии Дш0, что линейный закон не будет более хорошо аппроксимировать дисперсионное уравнение (рис. 8.11,в). В этом случае различные спектральные области импульса распространяются с различными групповыми скоростями и, следовательно, форма импульса меняется во время распространения. Выбрав две соседние элементарные спектральные области импульса вблизи частоты <а, разделенные элементарным частотным интервалом d®, определим изменение временной задержки dxd*