
- •Isbn 5-03-001053-х (русск.) isbn 0-306-42967-5 (англ.)
- •1.1. Спонтанное и вынужденное излучение; поглощение
- •1.1.1. Спонтанное излучение (рис. L.Lf а)
- •1.1.2. Вынужденное излучение (рис. 1л?б)
- •1.2. Принцип работы лазера
- •1.3. Схемы накачки.
- •БН&лиогека вшшгездячшсогв институт з
- •1.4. Свойства лазерных пучков
- •1.4.1. Монохроматичность
- •1.4.2. Когерентность
- •1.4.3. Направленность
- •Электромагнитная Волна
- •1*4.4. Яркость
- •1.4.5. Импульсы малой длительности
- •1.5. Структура книги
- •2.1. Введение
- •2.2. Теория излучения черного тела [1]
- •2.3. Поглощение и вынужденное излучение
- •2,3.1. Вероятности поглощения и вынужденного излучения
- •2.3.3. Механизм уширения линии
- •2.3.3.1. Однородное ушарение
- •2.3.3.2. Неоднородное уширение
- •2.3,3.3. Выводы и примеры
- •2.3.4. Сечение перехода, коэффициенты поглощения и усиления
- •2.4, Спонтанное излучение
- •2.4 Л. Полуклассический подход
- •2.4.2. Квантовоэлектродинамический подход
- •2.4.3. Термодинамический подход Эйнштейна
- •2.4.4. Связь между спонтанным временем жизни
- •Ол *споит
- •2.4.5, Заключительные замечания
- •2.5. Безызлучательная релаксация [11]
- •2.6. Насыщение
- •2.6.1. Насыщение поглощения; однородно уширенная линия
- •2.6.3. Неоднородно уширенная линия
- •2.7. Релаксация многоатомной системы
- •2.7.1. Захват излучения
- •2.7.2. Сверхизлучение и суперлюминесценция
- •2,8. Вырожденные уровни
- •2.9. Молекулярные системы
- •2,9,1. Энергетические уровни молекул
- •2.9.2. Заселенность уровней при тепловом равновесии
- •2.9.3. Излучательные и безызлучательные переходы
- •2.9.4. Квантовомеханический расчет вероятностей
- •Литература
- •3.1. Введение
- •3.2. Оптическая накачка [1, 2]
- •3.2.1. Кпд накачки
- •3,2.2. Излучательная эффективность и эффективность передачи1)
- •3,2.5. Заключительные замечания
- •3.3. Электрическая накачка
- •3.3.1. Физические свойства газовых разрядов [10—12]
- •3.3.2. Возбуждение электронным ударом
- •3.3.2.1. Сечение электронного удара [13]
- •3.3.2.2. Распределение энергии электронов
- •3.3.2.4. Уравнение ионизационного равновесия
- •3.3.2.5. Вычисление скорости накачки
- •3.3.3. Возбуждение посредством (около)резонансной
- •3J1. Покажите, что упругие столкновения встречаются значительно более
- •3.12. Теория амбиполярной диффузии дает следующее соотношение между электронной температурой т„ и произведением pD:
- •Литература
- •4.1. Введение
- •4.2. Некоторые разделы геометрической и волновой оптики
- •4.2.1. Матричная формулировка геометрической оптики [1]
- •4.2.2. Интерферометр Фабри—Перо [2]
- •4.2.3. Многослойные диэлектрические покрытия [3, 4]
- •Падают пучок
- •Отраженный
- •4.3. Время жизни фотона и добротность резонатора
- •4.4. Плоскопараллельный резонатор
- •4.4.1. Приближенная теория
- •4.4.2. Теория Фокса и Ли
- •4,5, Конфокальный резонатор [8]
- •4.6. Распространение гауссова пучка
- •Волны (б).
- •4.7. Обобщенный сферический резонатор [8]
- •4.7.1. Амплитуды мод
- •4.7.2. Резонансные частоты и дифракционные потери
- •4.7.3. Условие устойчивости
- •1 Положительная
- •(Кпршщтщшт ветвь
- •Отрицательная йетвь
- •4.8. Неустойчивые резонаторы [14, 15]
- •4.8.1. Геометрическое описание
- •4.8.2. Описание с помощью волновой оптики
- •4.8.3. Достоинства и недостатки неустойчивых резонаторов
- •4.8.4. Неустойчивые резонаторы с переменным коэффициентом отражения
- •Литература
- •5Л. Введение
- •5.2. Скоростные уравнения [2, 3]
- •5.2.1. Четырехуровневый лазер
- •5.2.2. Трехуровневый лазер
- •5.3. Непрерывный режим работы лазера
- •5.3.1. Четырехуровневый лазер
- •5.3.2. Трехуровневый лазер
- •5.3.3. Оптимальная связь на выходе лазера [7]
- •5.3.4. Перестройка частоты генерации лазера
- •5*3.5. Одномодовая и многомодовая генерация
- •5.3S.L Причины возникновения многоходовой генерации
- •5.3.5.2. Одномодовый режим генерации
- •5*3.6. Два числовых примера
- •5.3.8. Провал Лэмба и активная стабилизация
- •5.4, Нестационарный режим работы лазера
- •5.4Л, Релаксационные колебания в одномодовых лазерах
- •5.4.2, Пичковый режим многомодовых лазеров
- •5.4,3. Модуляция добротности [21]
- •5.4.3.1. Методы модуляции добротности
- •Дисррскшрозиитт пучок
- •5.4.3.2. Режимы генерации
- •5.4.3.4. Числовой пример
- •5.4.4. Модуляция усиления
- •5.4.5. Синхронизация мод [26, 27]
- •5.4Mj. Методы синхронизации мод
- •Машцштшйсн поглотитель
- •5.4.5.2. Лазерные системы с сихронизацией мод
- •5.4.6. Разгрузка резонатора
- •Выходной пучок
- •Ахтпшная среда
- •Дифрагированные пучки
- •5.5. Заключительные замечания
- •Литература
- •5. Непрерывный и нестационарный режимы работы лазеров
- •6.2. Твердотельные лазеры
- •6.2.1. Рубиновый лазер [1]
- •6.2.2. Неодимовые лазеры [4—6]
- •6.2.2.1. Nd : yag-лазер
- •6.2X2. Стекло с неодимом [7]
- •6.2.3. Лазер на александрите [8]
- •6.3.1. Лазеры на нейтральных атомах
- •6.Зал. Гелий-неоновые лазеры
- •6.3.1.2. Лазеры на парах меди и золота [12]
- •6.3,2. Ионные лазеры
- •6,3.2.1. Аргоновый лазер [13, 14]
- •Метастабитные уровни
- •6.3.3. Молекулярные газовые лазеры
- •6,3.3.3. Азотный лазер [21]
- •6.3.3.4. Эксимерные лазеры [22]
- •6.4. Жидкостные лазеры (лазеры на красителях) [23]
- •6.4.1. Фотофизические свойства органических красителей
- •Синметные Тршетные состояния состояния
- •6,4.2, Параметры лазеров на красителях
- •Модулированной добротностью.
- •Зеркало накачки
- •6.5. Химические лазеры [26f 27]
- •6.5.1. Лазер на hf
- •6.6. Полупроводниковые лазеры [28]
- •6.6.1.3. Излучательные и безызлучательные переходы
- •6.61.4. Квазиуровни Ферми
- •6.6.2.1. Лазер на гомопереходе
- •6.6.2.2. Лазер на двойном гетеропереходе
- •6*6.4. Применения полупроводниковых лазеров
- •6.6.5. Упрощенная теория полупроводникового лазера
- •6.7. Лазеры на центрах окраски [37]
- •3EpKpj7i? с „высокой
- •I V/ ospxcuw Сатрираше rtrtacmuxxti
- •6,8. Лазер на свободных электронах [3.8]
- •6.9. Рентгеновские лазеры
- •6.10. Сводка параметров
- •Назовите хотя бы четыре лазера, длины волн которых попадают в ик-область спектра.
- •Вычислите ширину лэмбовского провала для с02-лазера с продольной прокачкой и сравните ее с доплеровской шириной.
- •Литература
- •7.1. Введение
- •7.2. Монохроматичность
- •7.3. Комплексное представление полей
- •7,4. Статистические свойства лазерного излучения и излучения тепловых источников
- •7.5. Когерентность первого порядка [3]
- •7.5.1. Степень пространственной и временной когерентности
- •7.5.2. Измерение пространственной и временной когерентностей
- •Сзетазал волна
- •7.5.3. Соотношение между временной когерентностью и монохроматичностью
- •7.5.5. Пространственная и временная когерентность одномодовых и многомодовых лазеров
- •7.6. Направленность
- •7.6.1. Пучки с полной пространственной когерентностью
- •(Лампы).
- •7.7. Лазерная спекл-картина [6, 7]
- •7.8. Яркость
- •7.9. Сравнение лазерного и теплового излучений
- •Литература
- •Преобразование лазерного пучка: распространение, усиление, преобразование частоты, сжатие импульса
- •8.1. Введение
- •8.2. Преобразование в пространстве; распространение гауссова Пучка
- •8.3. Преобразование амплитуды: лазерное усиление [6—8]
- •8.4. Преобразование частоты; генерация второй гармоники и параметрическая генерация [9-11]
- •8.4.1. Физическая картина
- •Химическая формула
- •8.4,1.2, Параметрическая генерация
- •8*4,2. Аналитическое рассмотрение
- •8.4.2.1. Параметрическая генерация
- •2Ш ф exp[/(aJte)l (8.90а)
- •8.5. Временное преобразование; сжатие импульса
- •6;Ic Дифракаматая решетка Сжатый импульс " о, г т д ифрякцаонноя решетки Одн&уюдззсе оптическое волокно
- •6 Пс примерно в 10 раз.
- •Литература
- •Полуклассическая теория взаимодействия излучения с веществом
- •Пространственно-зависимые скоростные уравнения
- •Теория активной синхронизации мод для однородно уширенной линии
- •Литература
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Периодическая последова-
- •При замене суммы интегралом получается не тельность импульсов, а одиночный импульс.
- •Глава 6
- •Глава 7
- •Только в 2 раза. .
- •Глава 8
- •Введение
- •5.3. Непрерывный режим работы лазера 245 .
- •6. F Полупроводниковые лазеры г28м
Литература
Chebotaiev V. Р. — In: Laser Handbook (eds. Bass M., Stitch M L.), North-Holland, Amsterdam, 1985, v. 5, pp. 289—404.
Gabor D.t J., Inst. Elec. Eng., 93, 429 (1946).
Born M., Wolf Principle of Optics, 6th edn,, Pergamon, Oxford. 1980, pp. 491-544/[Имеется перевод: Ъорн M., Вольф I Основы оптики.-М.; Наука, 1970.]
Glauber R. /. — In: Quantum Optics and Electronics (eds. C. De Witt, A. Blandin, C. Cohen-Tannoudji), Gordon and Breach, New York, 1965, pp. 71, 94—98, 103, 351—155.
Louisell W. H.f Radiation and Noise in Quantum Electronics, McGraw-Hill Book Co., New York, 1964, pp. 47—53.
Laser Speckle and Related Phenomena (ed. J. С Dainty), Springer-Verlag, Berlin, 1975.
Fronton M., Laser Speckle and Applications in Optics, Academic Press, New York, 1979.
Goodman /. M, Introduction to Fourier Optics, McGraw-Hill Book Co., New York, 1968, ch. 5. [Имеется перевод: Гудмен Дж. Введение в фурье-оптику. — М.: Мир, 1970, гл. 5.],
8
Преобразование лазерного пучка: распространение, усиление, преобразование частоты, сжатие импульса
8.1. Введение
Прежде чем использовать лазерный пучок для каких-либо целей, его, как правило, подвергают некоторому преобразованию. Наиболее общепринятым является такое преобразование пучка, когда его заставляют распространяться в свободном пространстве или пропускают через соответствующую оптическую систему. Поскольку при этом происходит изменение пространственного распределения пучка (например, пучок может быть сфокусирован или расширен), в дальнейшем будем называть такое преобразование пространственным. Второй" способ преобразования, с которым также довольно часто приходится сталкиваться,
имеет место, когда пучок пропускают через усилитель или через цепочку усилителей. При этом изменяется главным образом амплитуда пучка и поэтому такое преобразование будем называть амплитудным. Существует еще третий, менее тривиальный способ, когда изменяется длина волны пучка вследствие прохождения его через соответствующую нелинейную оптическую среду (преобразование длины волны или частоты). Наконец, с помощью подходящего оптического элемента можно изменять временные характеристики лазерного пучка. Например, с помощью электрооптического или акустооптичеекого модулятора можно модулировать во времени амплитуду непрерывного лазерного пучка или с помощью систем сжатия, использующих нелинейные оптические элементы, можно значительно сократить длительность лазерного импульса. Этот четвертый и последний случай назовем временным преобразованием. Следует заметить, что во многих случаях все эти четыре типа преобразования оказываются взаимосвязанными. Например, амплитудное преобразование и преобразование длины волны нередко приводят к одновременным пространственным и временным преобразованиям.
В настоящей главе мы кратко рассмотрим четыре указанных выше преобразования лазерного пучка. В случае частотного преобразования из различных нелинейных оптических явлений, которые можно использовать [1] для достижения такого преобразования, мы рассмотрим здесь лишь параметрические эффекты. Фактически именно они лежат в основе некоторых наиболее эффективных методов, используемых при разработке новых источников когерентног'о света. Временное преобразование мы рассмотрим лишь в связи со сжатием оптического импульса, а с амплитудной модуляцией читатель может познакомиться в соответствующей литературе [2]. Мы также исключаем из рассмотрения некоторые амплитудные и временные преобразования,
являющиеся следствием нелинейных эффектов самофокусировки и фазовой самомодуляции ГЗ], хотя, как следует заметить, они могут играть важную роль в ограничении, например, характеристик лазерных усилителей.