
- •Фондовый конспект лекций по дисциплине
- •Раздел 1. Статика
- •Тема 1.Аксиомы статики. Система сходящихся сил. Пара сил. Момент силы относительно центра и оси лекция № 1 введение. Аксиомы статики
- •1.Введение
- •2. Основные понятия статики
- •3. Аксиомы статики
- •4. Связи и их реакции
- •Лекция № 2 система сходящихся сил
- •1. Способы сложения сил
- •2. Условия и уравнения равновесия системы сходящихся сил
- •3. Теорема о равновесии трех непараллельных сил
- •Лекция № 3 пара сил и момент силы относительно точки и оси
- •1.Момент силы относительно точки
- •2. Пара сил и ее момент. Сложение и условие равновесия пар сил
- •3.Сложение и условие равновесия пар сил
- •4. Момент силы относительно оси
- •Тема 2. Произвольная система сил лекция № 4 произвольная система сил
- •1. Приведение силы к заданному центру
- •2. Условия и уравнения равновесия произвольной системы сил
- •3. Равновесие с учетом силы трения
- •Тема 3. Центр тяжести лекция № 5 центр тяжести
- •1. Центр параллельных сил.
- •2. Центр тяжести твердого тела.
- •Из формулы получаем, например,
- •Для однородного тела во всех его точках плотность одинакова.
- •По этим формулам находят центры тяжести изделий из тонкой проволоки постоянного сечения.
- •3. Способы определения координат центра тяжести
- •Раздел 2. Кинематика
- •Тема 4. Кинематика точки лекция № 6 основные понятия кинематики. Кинематика точки
- •1. Основные понятия кинематики
- •2. Способы задания движения.
- •3.Взаимосвязь способов задания движения
- •4. Равнопеременное движение твердого тела.
- •Тема 5. Виды движения твердого тела лекция № 7 поступательное и вращательное движение твердого тела
- •1. Поступательное движение твердого тела.
- •2. Вращательное движение твердого тела относительно неподвижной оси.
- •3. Равнопеременное вращение.
- •4. Линейные скорости и ускорения точек вращения.
- •Лекция № 8 плоскопараллельное движение твердого тела
- •1. Определение и уравнения плоскопараллельного движения.
- •2. Скорости при плоском движении.
- •3. Векторная формула ускорения при плоском движении.
- •Методы исследования плоскопараллельного движения твердого тела
- •1. Мгновенный центр скоростей.
- •2. План скоростей.
- •3. План ускорений.
- •Тема 6. Сложное движение точки лекция № 10 сложное движение точки
- •1. Составляющие абсолютного движения
- •2. Скорость и ускорение при поступательном и вращательном движениях
- •3. Ускорение Кориолиса
- •Раздел 3. Динамика
- •Тема 7. Законы и задачи динамики. Принцип кинетостатики.
- •Динамика точки переменной массы
- •Лекция №11
- •Законы и задачи динамики
- •1.Законы динамики
- •2. Дифференциальные уравнения движения точки
- •3. Задачи динамики
- •Лекция № 12 принцип кинетостатики (даламбера)
- •1. Силы инерции точки и тела.
- •2. Момент инерции массы.
- •3. Принцип кинетостатики.
- •Лекция № 13 динамика тела переменной массы
- •1. Уравнение Мещерского. Реактивная сила.
- •2. Формула Циолковского для скорости ракеты.
- •3. Высота подъема ракеты.
- •Тема 8. Общие теоремы динамики точи и системы лекция № 14 общие теоремы динамики
- •Силы в механической системе.
- •2. Центр масс.
- •3.Теорема о движении центра масс
- •Лекция № 15 момент количества движения. Кинетический момент
- •1. Количество движения точки и системы. Закон сохранения количества движения
- •2. Момент количества движения.
- •3.Кинетический момент твердого тела.
- •Лекция № 16 работа и мощность силы. Кинетическая энергия точки и системы
- •1. Работа и мощность силы.
- •2. Частичные случаи вычисления работы.
- •3.Кинетическая энергия точки
- •4.Кинетическая энергия системы
2. Условия и уравнения равновесия системы сходящихся сил
Система сил, линии действия которых пересекаются в одной точке, называется сходящейся (Рис. 8):
Рис. 8
Для равновесия системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы равнодействующая, а, следовательно, и главный вектор этих сил были равны нулю. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической и или в аналитической форме.
Геометрическое условие равновесия
Так как главный вектор системы сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль только тогда, когда конец последней силы в многоугольнике совпадает с началом первой силы, то есть, когда многоугольник замыкается.
Следовательно, для равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнутым.
Аналитические условия равновесия.
Аналитически модуль главного вектора системы сил определяется формулой
Так
как под корнем стоит сумма положительных
слагаемых, то
обратится в нуль только тогда, когда
одновременно
,
то есть, как следует из формул, когда
действующие на тело силы будут
удовлетворять равенствам:
;
;
Последние равенства выражают условия равновесия в аналитической форме для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.
Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил (частный случай произвольной системы сил). В случае плоской системы сходящихся сил получим, очевидно, только условия равновесия:
;
3. Теорема о равновесии трех непараллельных сил
При решении задач статики иногда удобно пользоваться следующей теоремой: «Если твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке».
Пусть к твердому телу в трех точках приложены три непараллельные взаимно уравновешивающиеся силы , , , лежащие в одной плоскости (Рис. 9). Перенесем силы и в точку пересечения линий их действия (точка А) и найдем равнодействующую , которая будет приложена в этой же точке.
Рис. 9
Сила приложена в точке В, будучи уравновешивающей системы сил и , равна по модулю их равнодействующей и направлена по линии ее действия в противоположную сторону
= -
Следовательно, линия действия силы проходит через точку пересечения двух первых сил (точка А), что и требовалось доказать.
Кроме того, три свободных вектора сил , и должны образовать замкнутый треугольник, то есть
+ + = 0
Таким образом, три непараллельные силы могут находиться в состоянии равновесия только тогда, когда они лежат в одной плоскости, пересекаются в одной точке и их свободные векторы образуют замкнутый треугольник. (Необходимое и достаточное условие).