- •Глава 1. Строение клеток
- •3. Клеточное ядро
- •4. Клеточное деление
- •Глава 2. Биоэнергетика
- •2.1. Биоэнергетика на уровне экосистемы
- •2.2. Биоэнергетика на уровне организма
- •2.3. Равновесие живых систем
- •Глава 3. Природа устойчивости экосистем
- •Понятие биоценоза
- •3.2. Популяция
- •3.3. Устойчивость экосистем
- •3.4. Динамика экосистем, сукцессии
- •Глава 4. Биосфера
- •Солнечная радиация
- •4.1. Круговорот веществ в природе
- •4.2 Функции биосферы
- •Глава 5. Основные концепции современной генетики.
- •5.2. Экспрессия генов (синтез белка)
- •5.3. Основные направления современной молекулярной генетики
- •Глава 6. Современная теория эволюции
- •6.1. Истоки теории эволюции
- •6.2. Наследственность
- •6.3. Изменчивость
- •6.4. Природа и характер естественного отбора
- •Глава 7. Происхождение жизни
- •7.1. Основные концепции возникновения жизни
- •7.2 Современная модель происхождения и развития жизни
- •7.3. Эволюция биосферы
- •Глава 8. Экология происхождения и эволюции человека
- •Глава 9. Социально-биологическая природа человека. Социальная экология
- •9.1. Экологическая характеристика общества охотников и собирателей
- •9.2 Переход к сельскому хозяйству и его экологические последствия.
- •9.3. Социальные последствия перехода к сельскому хозяйству
- •9.4. Социальная эволюция и формирование современной среды обитания
- •Глава 10. Основные понятия общей экологии
- •Инфракрасные лучи
- •Видимая радиация
- •Почва и рельеф местности
- •Глава 11. Организм как система
- •Глава 12. Взаимоотношения организма человека со средой
- •12.1. Экология и биология питания
- •12.2. Реакции организма на изменения условий внешней среды
- •12.3 Экологическое воздействие на генетические структуры
- •12.4 Основные группы реакций организма на изменения внешней среды
- •12.5 Реакции организма человека на изменение основных климатических факторов
- •12.6 Защита организма от проникновения ксенобиотиков
- •12.8 Аллергия
- •12.9 Стресс – универсальная реакция адаптации
- •Глава 13. Взаимоотношения организма человека с микроорганизмами
- •Глава 14. Место физической культуры в среде обитания человека
4.2 Функции биосферы
— Первая функция — газовая — основные газы атмосферы азот и кислород, биогенного происхождения;
— вторая функция — концентрационная — организмы накапливают в своих телах многие химические элементы, среди которых на первом месте стоит углерод, среди металлов первый кальций, концентраторами кремния являются диатомовые водоросли, йода — водоросли (ламинария), фтора — скелеты позвоночных животных;
— третья функция — окислительно-восстановительная - организмы, обитающие в водоемах, регулируют кислородный режим и создают условия для растворения или же осаждения ряда металлов (V, Mn, Fe) и неметаллов (S) с первой валентностью;
— четвертая функция — биохимическая — размножение, рост и перемещение в пространстве («расползание») живого вещества;
— пятая функция — биогеохимическая деятельность человека — охватывает все разрастающееся количество веществ земной коры, в том числе таких концентраторов углерода, как уголь, нефть, газ и др., для хозяйственных и бытовых нужд человека.
В биогеохимических круговоротах следует различать две части, или как бы два среза: 1) резервный фонд — это огромная масса движущихся веществ, не связанных с организмами; 2) обменный фонд — значительно меньший, но весьма активный, обусловленный прямым обменом биогенным веществом между организмами и их непосредственным окружением. Если же рассматривать биосферу в целом, то в ней можно выделить: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре (в геологическом круговороте).
В связи с этим следует отметить, лишь один единственный на Земле процесс, который не тратит, а, наоборот, связывает солнечную энергию и даже накапливает ее — это создание органического вещества в результате фотосинтеза. В связывании и запасании солнечной энергии и заключается основная планетарная функция живого вещества на Земле.
Глава 5. Основные концепции современной генетики.
5.1 Наследственность – свойство живых организмов сохранять и передавать из поколения в поколение сходные признаки и обеспечивать специфический для данного вида характер индивидуального развития в определенных условиях среды.
Единицей наследственности является ген. Гены – дискретные единицы. Наследование признаков происходит независимо друг от друга, и соответственно независимо будет происходить и проявление признаков.
Материальным носителем наследственной
информации является молекула ДНК
(дезоксирибонуклеиновая кислота).
Молекула ДНК – органический полимер,
мономером которого являются нуклеотиды,
состоящие из пятиуглеродного сахара
(дезоксирибоза), азотистого основания
и остатка фосфорной кислоты.
Именно формирование связей между остатками фосфорной кислоты соседних нуклеотидов приводит к образованию полимерной цепочки ДНК. В состав ДНК входит 4 разновидности нуклеотидов, отличающихся по азотистым основаниям. Это может быть:
аденин ( А ); гуанин ( Г );цитозин ( Ц ); тимин (Т ).
Между азотистыми основаниями могут устанавливаться специфические водородные связи: между аденином и тимином, а также между гуанином и цитозином. Благодаря формированию этих связей, молекула ДНК может представлять собой не одиночную, а двойную полимерную цепь, в которой каждое азотистое основание нуклеотида одной цепи связано водородной связью с комплиментарным азотистым основанием нуклеотида другой цепи.
Принцип комплиментарности лежит в основе и передачи наследственной информации и ее реализации (экспрессии генов).
Наследственная информация представляет собой исключительно информацию о первичной структуре молекул белка данного организма.
Белки – органические полимеры, состоящие из аминокислот. В белках всех организмов на Земле содержится 20 различных аминокислот, и свойства белков зависят исключительно от той последовательности, в которой эти аминокислоты составляют единую молекулу белка. Белки выполняют в организмах самые разнообразные функции: строительную, транспортную, информационную, каталитическую. Тот факт, что катализаторами абсолютного большинства клеточных реакций являются высокоспецифичные белки - ферменты, ставит результат химической реакции в зависимость от строения и свойств белка – фермента. В свою очередь любой признак организма – это результат конкретных химических реакций. Следовательно, информация о любом признаке может быть сведена к информации о порядке соединения аминокислот в молекуле соответствующего белка - фермента. Кодируется эта информация в молекулах ДНК с помощью генетического кода.
Каждой аминокислоте в молекуле белка соответствует определенная последовательность нуклеотидов в молекуле ДНК.
Основные свойства генетического кода:
1. Одной аминокислоте соответствуют 3 располагающиеся рядом нуклеотида, которые называются триплетом или кодоном.
2. Вырожденность. Поскольку вероятность сочетаний из 3-х нуклеотидов значительно больше 20, одна и та же аминокислота может кодироваться не одним, а двумя или тремя триплетами, но любой триплет кодирует только одну строго определенную аминокислоту.
3. Универсальность. Одни и те же аминокислоты кодируются одними и теми же триплетами у всех живых организмов на Земле, что является решающим доказательством единства происхождения всего живого.
Участок молекулы ДНК, несущий информацию о структуре молекулы одного белка, и называется ген. Одна молекула ДНК содержит множество разных генов, которые отделяются специальными триплетами, некодирующими никакой аминокислоты и называемыми терминаторами. Это: ТАА, ТАГ, ТГА – своего рода границы между генами в молекуле ДНК.
