- •Лекции по предмету «Математика» для студентов, обучающихся по специальности «Сестринское дело»
- •Лекция № 1
- •Производная алгебраической суммы функций.
- •2. Производная произведения функций
- •3. Производная частного двух функций
- •Производная сложной функции
- •Лекция № 2
- •Точки экстремума
- •Лекция № 3
- •4. Простейшие способы интегрирования.
- •Свойства определенного интеграла.
- •Методы вычисления определенного интеграла:
- •Понятие о дифференциальном уравнении
- •Понятие задачи Коши.
- •Основные тины дифференциальных уравнений:
- •Например:
- •Линейные однородные дифференциальные уравнения второго порядка с постоянным коэффициентом.
- •10. Числовая последовательность
- •Ограниченные последовательности.
- •Монотонные последовательности.
- •Лекция № 4
- •Ход занятия: Предел числовой последовательности.
- •Необходимое условие сходимости произвольной числовой последовательности:
- •Свойства сходящихся последовательностей
- •Теоремы о пределах последовательностей.
- •Пределы функций. Нахождение пределов функции в точке и на бесконечности.
- •Ряды с неотрицательными членами
- •Абсолютно и условно сходящиеся ряды.
- •Разложение функций в ряд Маклорена.
- •Элементы множеств
- •Основы теории графов
- •Начальные понятия о графах
- •Способы задания графов
- •Способы задания графов:
- •Комбинаторика
- •Размещения.
- •Сочетания.
- •Изложение основных теорем и формул вероятностей: теорема сложения, условная вероятность, теорема умножения, независимость событий, формула полной вероятности.
- •Теорема умножения вероятностей:
- •Лекция № 6
- •Случайные величины.
- •Дисперсия случайной величины.
- •Ход занятия:
- •1. Математическим ожиданием дискретной случайной величины называется сумма произведений значений случайной величины на вероятности этих значений.
- •Лекция № 7
- •Ход занятия:
- •Статистическая совокупность, её элементы, признаки.
- •Критерии проверки статистических гипотез. Выявления достоверности различий.
- •Выявление взаимосвязей. Коэффициент корреляции.
- •1. Понятие о медико-демографических показателях, расчет общих показателей рождаемости, смертности.
- •2. Показатели, определяющие деятельность работы поликлиники.
- •3. Показатели, характеризующие работу фап.
- •Лекция № 8
- •Ход занятия.
- •Пример Назначение врача: кефлин по 500 мг внутримышечно каждые 6 часов
- •Можно использовать следующую формулу:
- •Формула Шкарина
- •Объемный метод.
- •Калорийный метод.
- •Формулы прибавки массы тела и роста ребенка.
- •Артериальное давление ребенка.
- •Газообмен в легких
- •Задачи на применение физического (механического) смысла производной.
- •Задачи на экстремум функции.
- •Приложения определенного интеграла.
- •Дифференциальные уравнения в области профессиональной деятельности.
- •Теория эпидемий.
- •Решение комбинаторных задач.
Теорема умножения вероятностей:
События А и В называются независимыми, если вероятность появления события А не зависит от того, произошло событие В или нет, и наоборот, вероятность появления события В не зависит от того, произошло событие А или нет.
Вероятность совместного появления независимых событий равна произведению их вероятностей. Для двух событий Р(А и В)=Р(А)·Р(В).
Пример: В одной урне 5 черных и 10 белых шаров, в другой 3 черных и 17 белых. Найти вероятность того, что при первом вынимании шаров из каждой урны оба шара окажутся черными.
Решение: вероятность вытаскивания черного шара из первой урны (событие А) – Р(А) = 5/15 = 1/3, черного шара из второй урны (событие В) – Р(В) = 3/20
Р(А и В)=Р(А)·Р(В) = (1/3)(3/20) = 3/60 = 1/20.
На практике нередко вероятность события В зависит оттого, произошло некоторое другое событие А или нет. В этом случае говорят об условной вероятности, т.е. вероятности события В при условии, что событие А произошло. Условную вероятность обозначают P(B/A).
Теорема умножения вероятностей усложняется, если определяется вероятность события, состоящего из совместного появления двух зависимых между собой событий. В том случае, когда событие В выполняется при условии, что событие А имело место, вероятность совместного появления двух этих событий равна
Р(А и В)=Р(А)Р(В/А).
В урне 5 шаров: 3 белых и 2 черных. Найти вероятность того, что последовательно один за другим будут вынуты черный и белый шары.
Вероятность того, что первым будет изъят черный шар (событие А), равна Р(А) = m/n = 2/5. После удаления черного шара в урне остается 4 шара: 3 белых и 1 черный. В этом случае вероятность вынимания белого шара (событие В после выполнения события А) равна Р(В/А) = ¾. Получаем Р(А и В)=Р(А)Р(В/А) = (2/5)(3/4) = 3/10.
Если событие А может произойти только с одним из событий Н1,Н2,…Нn, которые образуют полную систему попарно несовместных событий, то вероятность события А определяется по формуле полной вероятности
Р(А) = Р(А/Н1)Р(Н1)+Р(А/Н2)Р(H2)+...+Р(А/Нn)Р(Нn).
Для вычисления вероятности P(Hi /A) в этом случае используется формула Байесa:
Контрольные вопросы
Дайте определение вероятности событий.
Какие события называются равновозможными?
Какие события называются достоверными?
Какие события называются невозможными?
Какие события называются противоположными?
Сформулируйте классическое определение вероятности.
Чему равна вероятность достоверного события? Невозможного события?
Назовите формулы сложения и умножения вероятностей.
Домашнее задание
Заполните в рабочей тетради занятие 11-12.
Лекция № 6
Тема: : Основные понятия теории вероятности и математической статистики
План:
Случайные величины.
Дисперсия случайной величины.
Цели: создание благоприятных условий для введения понятия случайных событий;
познакомить с законом распределения случайных величин; познакомить с важными характеристиками случайных величин: математическое ожидание, дисперсия, среднее квадратичное отклонение.
