Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по предмету математика.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.06 Mб
Скачать

Лекции по предмету «Математика» для студентов, обучающихся по специальности «Сестринское дело»

Номера занятий

Наименование разделов и тем

Количество часов

Лекции

1

Дифференциальное исчисление.

2

2

Дифференциальное исчисление.

2

3

Интегральное исчисление.

Последовательности пределы и ряды

1

1

4

Последовательности пределы и ряды. Операции с множествами. Основные понятия теории графов. Комбинаторика.

1

1

5

Основные понятия теории вероятности и математической статистики.

2

6

Основные понятия теории вероятности и математической статистики.

2

7

Математическая статистика и её роль в медицине и здравоохранении.

2

8

Численные методы математической подготовки среднего медицинского персонала.

Решение прикладных задач в области профессиональной деятельности

1

1

Лекция № 1

Тема: Дифференциальное исчисление

План:

  1. Производная функции, её геометрический и механический смысл.

  2. Формулы производных.

  3. Изучение производных суммы, произведения, частного функций.

  4. Обоснование производных элементарных и сложных функций, обратных функций

Цели: создание благоприятных условий для изучения понятия производная функции, ее геометрического и механического смысла; познакомить с формулами нахождения производных; изучения правил нахождения производных; производная сложных и обратных функций.

1. Приращение аргумента и функции.

Пусть функция f(x) определена на некотором интервале I, х0 и х два произвольных значения аргумента из этого интервала. Разность между двумя значениями аргумента называется приращением аргумента и обозначают Δх:

х - х0 =Δх, откуда х = х0 + Δх, т.е. значение аргумента х можно определить через х0 и его же приращение Д х.

Разность между двумя значениями функции называется приращением функции и обозначают Δу: Δу=Δ f=f(xo+ Δx)-f(xo)

Как видно из рисунка приращение аргументаΔ х, изображается приращением абсциссы точки графика функции у = f(x), а приращение функции Δf - приращением ординаты этой точки.

2. Определение производной.

Пусть функция y = f(x) определена в промежутке X.

Предел отношения приращения функции Δf к приращению аргумента Δх, когда Δх стремится к нулю, при условии, что этот предел существует, называется производной функции f(x) в точке х.

Или :

Производной функции y = f(x) в точке хo называется предел

 = .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке xo; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен+ ∞ (или - ∞), то при условии, что функция в точке хo непрерывна, будем говорить, что функция f(x) имеет в точке хo бесконечную производную.

Производная обозначается символами y/(x0), f/(x0) ; , .

Читается f'(x) (эф штрих от икс).

Нахождение производной называется дифференцированием функции, поэтому выражение "продифференцировать функцию" равносильно выражению "найти производную функции".

3. Физический смысл производной.

Исходя из определения производной, можно сказать:

  1. мгновенная скорость прямолинейного движения есть производная от пути S по времени t: v (t)= S'(t);

  2. мгновенная скорость химической реакции есть производная от функции X по аргументу t: v (t) = x'(t).

Таким образом, можно сделать вывод: производная функции у = f(x) по аргументу х есть мгновенная скорость изменения функции у = f(x). В этом состоит физический смысл производной.

Вторая производная функции у = f(x) по аргументу х есть ускорение изменения функции у = f(x).

4. Геометрический, смысл производной.

Рассмотрим график функции f(x) и построим на этом графике произ­вольным образом точку М. В данной точке М проведем касательную к графику функции f(x)

Итак, угловой коэффициент касательной к графику функции в данной точке равен значению ее производной в точке касания. В этом состоит геометрический смысл производной.

k = tga = f'(x0)

Таблица производных