- •Занятие 1 Белки. Ферменты. Медицинская энзимология.
- •1.1.Функции белков, строение, классификация и свойства аминокислот.
- •1.2 Фолдинг белков
- •1.3 Локализация ферментов в клетке, органоспецифические и маркерные ферменты.
- •1.4 Регуляция активности ферментов. Роль гормонов, цАмф, активаторов, ингибиторов. Регуляция активности ферментов
- •1.5. Энзимопатии.Определение. Классификация. Степень клинических проявлений энзимопатий.
- •1.6. Энзимодиагностика, принципы и объекты энзимодиагностики.
- •Занятие 2 Биологическое окисление. Биоэнергетика. Митохондриальная медицина.
- •2.1. Субстраты бо. Схема образования субстратов из ув, липидов, белков.
- •2.2 Цтк(цикл Кребса)
- •2.3 Пути утилизации o2 в организме.
- •2.4 Окислительное фосфорилирование.Хемиосмотическая теория сопряжения окислительного фосфорилирования п. Митчелла
- •2.5 Митохондриальные болезни. Классификация. Типы клинические проявления
- •2.6 Михондрии как пусковой механизм апоптоза
- •Занятие 3 Углеводный обмен в норме и при патологии. Гормональная регуляция метаболизма.
- •3.1 Переваривание и всасывание углеводов в жкт в норме и при патологии.
- •3.2. Значение фосфорилирования глюкозы. Пути обмена г-6-ф. Схема углеводного обмена в организме.
- •3.3. Энергетический баланс окисления углеводов
- •3.4. Регуляция уровня глюкозы в крови. Нормо- гипо- и гипергликемии
- •3.5 Основные клинические проявления диабета их связь с нарушением метаболизма
- •3.6. Принципы организации нейро-эндокринной системы
- •Занятие 4 Липидный и белковый обмен в норме и при патологии.
- •4.1 Липопротеиды строение, классификация, хим. Состав, функциональная роль.
- •4.2 Переваривание и всасывание липидов в жкт в норме и при патологии
- •4.3 Механизмы регуляции липидного обмена
- •4.4 Дислипопротеидемия
- •4.5 Энзимопатии цсм, виды и основные клинические проявления.
- •4.6. Патология обмена азотистых оснований и нуклеиновых кислот
- •Занятие 5 Биохимия крови и органов гомеостаза
- •5.1. Белки плазмы крови, их классификация
- •Белковые компоненты плазмы крови
- •Альбумины
- •Функции альбуминов
- •Глобулины
- •Белки-ферменты плазмы крови.
- •5.2.Механизмы регуляции кос
- •5.3. Гемоглобин: строение, свойства, производные, виды
- •5.4. Метаболизм железа.
- •5.5 Нарушение обмена при острой и хронической почечной недостаточности
- •5.6 Печень. Клеточный состав, метаболическая гетерогенность гепатоцитов
- •Занятие 6 Биохимия мышечной ткани и миокарда. Основы радиационной биохимии. Биохимия канцерогенеза.
- •6.1. Ограничение двигательной активности(гипокинезия) Гипокинетический синдром, основы патогенеза
- •Патогенез гкс (1-й этап)
- •Патогенез гкс (2-й этап)
- •Патогенез гкс (вывод)
- •6.2 Особенности метаболизма мышечной ткани
- •6.3.Биохимическое обоснование лечения сердечной недостаточности
- •6.4. Химический канцерогенез
- •6.5. Радиационный канцерогенез
- •6.6.Вирусный канцерогенез. Hpv- вирус папилломы человека, hsv – вирус простого герпеса
Занятие 2 Биологическое окисление. Биоэнергетика. Митохондриальная медицина.
2.1. Субстраты бо. Схема образования субстратов из ув, липидов, белков.
2.2 Цтк(цикл Кребса)
Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́)- центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО—) окисляются до углекислого газа (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 NADH, 1 FADH2 и 1 GTP (или ATP). Электроны, находящиеся на NADH и FADH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется ATP.
Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса. Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций. Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и двух декарбоксилирований (отщепление СО2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО2 и Н2О, а молекула оксалоацетата регенерируется.
2.3 Пути утилизации o2 в организме.
В организме существует 3 пути потребления и утилизации кислорода:
1 путь - 90-95% O2 идет на митохондриальное окисление.
2 путь - 5-10% идет на микросомальное окисление (в печени при поступлении больших количеств токсинов - 40%).
3 путь - перекисное окисление (2-5%).
Микросомальная дыхательная цепь.
Микросомальное окисление - это окисление, протекающее на гладкой ЭПС нормальной неразрушенной клетки.
Наиболее интенсивно микросомальное окисление протекает в печени и надпочечниках, а также в местах контакта с внешней средой, в коже, почках, легких, селезенке.
ЭПС - 2-й слой мембран, ассоциированных с 3-мя основными классами ферментов:
1)оксидоредуктазы;2)трансферазы;3)гидролазы.
Главная функция этих ферментов - реакции детоксикации.
Микросомальное окисление осуществляется с помощью одноименной ДЦ, которая представляет собой систему переносчиков протонов и электронов с НАД или НАДФ на кислород.
Микросомальное окисление можно записать:
RH + НАД (НАДФ).H2 + O2 ---> ROH + НАД (НАДФ) + HOH
Многие гидрофобные вещества организма обладают токсичностью, за счет того, что растворяются в клеточных мембранах и тем самым разрушают их.
Задачей организма является перевод этих гидрофобных соединений в гидрофильные, которые легче выводятся почками. Это осуществляется микросомальным окислением.
Таким образом, основная роль микросомальной ДЦ заключается в осуществлении реакций синтеза с участием кислорода.
Роль микросомального окисления состоит в биосинтезе Vit D, кортикостероидов, коллагена, тирозина, катехоламинов (пластическая функция)
Митохондриальное окисление главная функция- энергетическая. Митохондриальное окисление можно записать:
Н++ НАДН + ½ O2 = НАД+ +Н2О
микросомальная и митохондриальная дыхательные цепи взаимодействуют друг с другом через цитохром b5.
Окисление НАД.Н2 не происходит и он накапливается. В межмембранном пространстве имеется цитохром b5, который принимает электроны с НАД.Н М/Х ДЦ и перебрасывает их на микросомальную ДЦ и тем самым угроза энергетического голода устраняется.
Таким образом ц. b5 - фермент, компонент микросомальной ДЦ, который обеспечивает межмембранный митохондриально-микросомальный перенос электронов.
Перекисное окисление.
Перекисное окисление - это третий путь утилизации вдыхаемого кислорода (от 2 до 5%).Кислород сам по себе является парамагнитным элементом (это было установлено методом молекулярных орбиталей) т. к. имеет на внешнем слое 2 неспаренных электрона. В реакциях перекисного окисления происходит одноэлектронное восстановление кислорода.
Функции: пластическая,защитная, регуляторная. Активные формы кислорода
O2. - супероксидный ион-радикал, более активная форма кислорода
O2 - синглетный кислород.
_. _
O2 и O2 - инициируют образование большого количества радикалов, по цепному механизму:
_. _.
O2 + H+ ---> HO2 - гидропероксидный радикал
_. _.
HO2 + H+ + O2 ----> H2O2 + O2 .
H2O2 + Fe2+ ----> Fe3+ + OH- + OH (пероксидный радикал).
_.
O2 + Fe3+ ---> O2 + Fe2+
В нормальных условиях перекисное окисление регулирует агрегатное состояние мембран, лежит в основе тканевой адаптации. (Это играет роль в стрессовых ситуациях, когда клетка т. о. защищается от избытка гормонов).
При всех видах патологии активность перекисных процессов возрастает, и является инструментом повреждения мембраны. В ней образуются мощные ионные каналы, через которые входят ионы Na+, K+ и др. и содержимое клетки как бы вываливается и она гибнет.
OH. - радикал взаимодействует с ДНК и РНК, вызывая возникновение генных мутаций и провоцируя канцерогенез. Перекисные процессы направлены на создание и поддержания АОЗ.
