Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_ekzamen.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
484.58 Кб
Скачать

6. Средняя в статистике, ее сущность и условия применения. Виды и формы средней. Средняя простая и взвешенная. Веса средних, их выбор. Расчет средних по данным вариационного ряда распределения.

Средняя величина - это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин. Важнейшее свойство средней величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом. Важнейшим условием научного использования средних величин в статистическом анализе общественных явлений является однородность совокупности, для которой исчисляется средняя. Качественная однородность совокупности определяется на основе всестороннего теоретического анализа сущности явления. Так, например, при исчислении средней урожайности требуется, чтобы исходные данные относились к одной и той же культуре (средняя урожайность пшеницы) или группе культур (средняя урожайность зерновых). Нельзя вычислять среднюю для разнородных культур. Средние, полученные для неоднородных совокупностей, будут искажать характер изучаемого общественного явления, фальсифицировать его, или будут бессмысленными. Еще одним важным условием применения средних величин в анализе является достаточное количество единиц в совокупности, по которой рассчитывается среднее значение признака. Достаточность анализируемых единиц обеспечивается корректным определением границ исследуемой совокупности, т.е. закладывается еще на начальном этапе статистического исследования. Данное условие становится решающим при применении выборочного наблюдения, когда необходимо обеспечить репрезентативность выборки.

Определение максимального и минимального значения признака в изучаемой совокупности также является условием применения средней величины в анализе. В случае больших отклонений между крайними значениями и средней, необходимо проверить принадлежность экстремумов к исследуемой совокупности. Если сильная изменчивость признака вызвана случайными, кратковременными факторами, то, возможно, крайние значения не характерны для совокупности. Следовательно, их следует исключить из анализа, т.к. они оказывают влияние на размер средней величины. Средняя -  это  один из распространенных приемов обобщений. Правильное понимание сущности средней, определяет ее особую  значимость  в условиях рыночной экономики, когда средняя через единичное и случайное, позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др. В статистике выделяют несколько видов средних величин:

1. По наличию признака-веса: а) невзвешенная средняя величина; б) взвешенная средняя величина.

2. По форме расчета: а) средняя арифметическая величина; б) средняя гармоническая величина;

в) средняя геометрическая величина; г) средняя квадратическая, кубическая и т.д. величины.

3. По охвату совокупности: а) групповая средняя величина; б) общая средняя величина. При расчете средних величин появилось понятие “вес”. В качестве веса будет выступать стоимость основных производственных фондов и нормируемых оборотных средств, то есть понятие веса и частоты не всегда совпадают.

На практике из массы признаков необходимо выбрать один, который следует использовать в качестве веса. Выбор веса не следует понимать так, что всякий раз может быть несколько вариантов взвешивания. Вопрос должен быть решен таким образом, чтобы в результате взвешивания был бы обеспечен возврат к тем величинам, которые играли роль числителя при исчислении средней величины. Следовательно, при взвешивании средних величин в качестве весов должен быть взят знаменатель дроби, ибо только при умножении на то, на что раньше делили, мы вернемся к первоначальной величине.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f). Наряду со средними величинами в качестве статистических характеристик вариационных рядов распределения рассчитываются структурные средние – мода и медиана.  Мода (Mo) представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой.  Медианой (Me) называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности.  Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины ∑|xi - Me|=min.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]