Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_ekzamen.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
484.58 Кб
Скачать

1. Основные понятия статистической науки: статистическая совокупность, единицы и признаки совокупности, вариация признаков. Закон больших чисел и его значение в статистике.

Статистика — одна из общественных наук, имеющая целью сбор, упорядочивание, анализ и сопоставление числового представления фактов, относящихся к самым разнообразным массовым явлениям. Это учение о системе показателей, т.е. количественных характеристик, дающих, дающих всестороннее представление об общественных явлениях, о народном хозяйстве в целом и отдельных его отраслях. Основные черты и особенности предмета статистической науки:

1) Статистика исследует не отдельные факты, а массовые социально-экономические явления и процессы, выступающие как множества отдельных фактов, обладающих как индивидуальными, так и общими признаками. Объект статистического исследования называют статистической совокупностью. Статистическая совокупность — это множество единиц, обладающих массовостью, однородностью, определённой целостностью, взаимозависимостью состояний отдельных единиц и наличием вариации. Каждый отдельно взятый элемент данного множества называется единицей статистической совокупности. Единицы совокупности характеризуются общими свойствами, т.е. признаками. Под качественной однородностью совокупности понимается сходство единиц по каким-либо существенным признакам и различие по каким-либо другим признакам. Каждая единица совокупности обладает индивидуальными особенностями и различиями, отличающими их друг от друга, т.е. существует так называемая вариация признака. Массовый характер общественных законов и своеобразие их действий предопределяет необходимость исследования совокупных данных.

Закон больших чисел порожден особыми свойствами массовых явлений. Последние в силу своей индивидуальности, с одной стороны, отличаются друг от друга, а с другой – имеют нечто общее, обусловленное их принадлежностью к определенному классу, виду. Причем единичные явления в большей степени подвержены воздействию случайных факторов, ежели их совокупность.

Закон больших чисел в наиболее простой форме гласит, что количественные закономерности массовых явлений отчетливо проявляются лишь в достаточно большом их числе.Таким образом, сущность его заключается в том, что в числах, получающихся в результате массового наблюдения, выступают определенные правильности, которые не могут быть обнаружены в небольшом числе фактов.

Закон больших чисел выражает диалектику случайного и необходимого. В результате взаимопогашения случайных отклонений средние величины, исчисленные для величины одного и того же вида, становятся типичными, отражающими действия постоянных и существенных фактов в данных условиях места и времени.

Тенденции и закономерности, вскрытые с помощью закона больших чисел, имеют силу лишь как массовые тенденции, но не как законы для каждого отдельного случая.

 

2. Статистическое измерение, методы сплошного и выборочного наблюдения социально-экономических явлений и процессов, статистические группировки, методы обработки и анализа статистической информации.

Статистическое наблюдение – это планомерный, научно организованный и как правило систематический сбор данных о явлениях и процессах общественной жизни путём регистрации заранее намеченных существенных признаков с целью получения в дальнейшем обобщающих характеристик этих явлений и процессов. На основе наблюдения делаются выводы о тех или иных психических процессах. Различают два вида наблюдения - сплошное и выборочное. Сплошным называют наблюдение, когда фиксируются все особенности и проявления психической деятельности человека в течение какого-то определенного периода. В отличие от этого при выборочном наблюдении обращается внимание только на те факты в поведении человека, которые имеют прямое или косвенное отношение к изучаемому вопросу.

Выборочное наблюдение является одним из наиболее широко применяемых видов несплошного наблюдения. В основе выборочного наблюдения лежит идея о том, что отобранная в случайном порядке некоторая часть единиц может представлять всю изучаемую совокупность явления по интересующим исследователя признакам. Цельювыборочного наблюдения является получение информации для определения сводных обобщающих характеристик всей изучаемой генеральной совокупности.

Группировка - это распределение множества единиц исследуемой совокупности по группам в соответствии с существенным для данной группы признаком. Метод группировки позволяет обеспечивать первичное обобщение данных, представление их в более упорядоченном виде. Признаки, по которым проводится группировка, называют  группировочными признаками. Группировочный признак иногда называют  основанием группировки. Правильный выбор существенного группировочного признака дает возможность сделать научно обоснованные выводы по результатам статистического исследования. Группировочные признаки могут иметь как  количественное выражение (объем, доход, курс валюты, возраст и т.д.), так и  качественное (форма собственности предприятия, пол человека, отраслевая принадлежность, семейное положение и т.д.). Система способов, приемов, с помощью которых статистика исследует массовые явления, образует статистическую методологию. Ее специфика заключается в том, что все основные методические приемы используются по мере выполнения задач трех последовательных стадий (этапов) статистического исследования:             I.      Статистического наблюдения;          II.      сводки и группировки первичных статистических данных;       III.      научной обработки и анализа статистической информации. Содержание работы первого этапа предполагает использование метода массовых наблюдений, которые есть не что иное, как сбор первичной статистической информации. На втором этапе собранная информация при помощи метода статистических группировок определенным способом обобщается и распределяется. На третьем этапе с помощью метода обобщающих показателей осуществляется анализ статистической информации.

3.Организационные формы и виды статистического наблюдения. Способы статистического наблюдения. Виды группировок, их применение в статистике. Группировочные признаки, их обоснование и выбор. Определение числа групп и величины интервала.

К основным организационным формам статистического наблюдения относят: отчетность и специально организованное наблюдение.

Отчетность – это форма статистического наблюдения, при которой в соответствующие статистические органы поступают в определенные сроки сведения от предприятий и организация, которые осуществляют экономическую деятельность. Сведения должны подаваться в установленном законом порядке отчетных документов.

Органами государственной статистики утверждаются формы статистической отчетности.

В коммерческой деятельности отчетность подразделяется на:

1) общегосударственную – обязательна для всех организаций и представляется в сводном виде в органы государственной статистики;

2) внутриведомственную – эта отчетность действует в пределах ведомств и министерств. Существуют следующие формы отчетности:

1) типовой называют отчетность, которая содержит показатели, одинаковые для всех предприятий, учреждений различных организационных форм, а также для иных видов деятельности

2) если предприятие имеет свои определенные особенности, то в эту организацию вводится специализированная отчетность;

3) отчетность, предоставляемая каждым предприятием в одинаковые промежутки времени, называется периодической;

4) отчетность, которая поступает в органы статистики по мере необходимости, называется единовременной отчетностью. Каждая организация вправе выбирать, по какому способу ей предоставить отчетные данные.

Виды статистического наблюдения:

1) если обследованию подвергается абсолютно все единицы изучаемой совокупности явлений и процессов, то это сплошное статистическое наблюдение;

2) если обследованию подвергаются часть единиц изучаемой совокупности явлений, то это несплошное статистическое наблюдение;

3) выборочным наблюдением называют наблюдение, при котором характеристика всей совокупности фактов дается по некоторой их части, отобранной в случайном порядке;

4) монографическое обследование – это детальное изучение и описание определенных единиц совокупности;

5) если обследованию подвергается та часть единиц совокупности, у которой величина изучаемого признака является преобладающей во всем объеме, то это называетсяметодом основного массива;

6) сбор данных, основанный на добровольном заполнении адресатами анкет, называетсяанкетным обследованием;

7) если наблюдение ведется непрерывно, и при этом все факты и явления, происходящие в состоянии изменения, регистрируются, то это наблюдение называется текущим;

8) если же наблюдение осуществляется нерегулярно, но только тогда, когда требуется, это наблюдение называется единовременным;

9) периодическим называется наблюдение, которое повторяется через определенные промежутки времени (год, месяц, квартал и т. д.).

В зависимости от источников собираемых сведений различают:

1) наблюдение, осуществляемое самими регистраторами путем замера и с помощью осмотра, подсчета и взвешивания признаков изучаемого объекта, называется непосредственным;

2) опрос – это наблюдение, при котором ответы человека на вопросы фиксируются на определенном формуляре;

3) при документальном учете фактов источником сведений служат документы.

Предоставление предприятиями, организациями статистических отчетов о своей хозяйственной деятельности в строго установленном порядке называют отчетным способом. Вид статистического наблюдения, предполагающий предоставление сведений в органы, которые и ведут наблюдение, в явочном порядке называют явочным способом.

Если сведения в органы предоставляют корреспонденты, то этот способ называют корреспондентским. (1)  Типологические группировки

Их задача – выявление социально-экономических типов или однородных в существенном отношении групп.

(2)  Структурные группировки

Их задача – изучение состава отдельных типических групп при помощи объединения единиц совокупности, близких друг к другу по величине группировочного признака.

(3)  Аналитические группировки

Их задача – выявления влияния одних признаков на другие ( выявить связь между социально-экономическими явлениями).

(4)  Комбинационные группировки

В них производится разделение совокупности на группы по двум или более признакам. При этом группы, образованные по одному признаку, разбиваются на подгруппы по другому признаку.

Такие группировки дают возможность изучить структуру совокупности по нескольким признакам одновременно. Группировочный признак - признак, по которому происходит объединение отдельных единиц совокупности в отдельные группы. Для группировки следует брать существенные признаки, выражающие наиболее характерные черты изучаемого явления.

Первичная группировка - непосредственная группировка данных статистического наблюдения. Вторичная группировка- это перегруппировка ранее сгруппированных данных. Необходимость вторичной группировки возникает в двух случаях:

1) ранее произведенная группировка не удовлетворяет целям исследования в отношении числа групп;

2) для сравнения данных, относящихся к различным периодам времени или к различным территориям, если первичная группировка была произведена по разным группировочным признакам или по разным интервалам.

Существуют два способа вторичной группировки: объединение мелких групп, а более крупные и выделение определённой доли единиц совокупности.

Основные задачи, решаемые с помощью группировок:

1) выделение в совокупности изучаемых явлений их социально-экономических типов;

2)  изучение структуры общественных явлений;

3)  выявление связей и зависимостей между общественными явлениями.

Для определения оптимального числа групп применяется формула Стерджесса: , где n – число групп; N – число единиц совокупности. n округляют до целого числа. После определения числа групп следует определить интервалы группировки. Интервал – это значения варьирующего признака, лежащие в определённых границах. Нижней границей интервала называется наименьшее значение признака в интервале, а верхней границей – наибольшее значение признака в нём. Величина (ширина) интервала представляет собой разность между верхней и нижней границами интервала. Интервалы группировки в зависимости от их величины бывают равные и неравные. Если вариация признака проявляется в сравнительно узких границах и распределение носит более или менее равномерный характер, то строят группировку с равными интервалами. Величину равного интервала определяют по формуле: , где и – максимальное и минимальное значения признака Открытые – это интервалы, у которых указана только одна граница: верхняя – у первого интервала, нижняя – у последнего. Ширина открытого интервала принимается равной ширине смежного с ним интервала. Закрытыми называются интервалы, у которых обозначены обе границы. При группировке по количественному признаку границы интервалов могут быть обозначены по-разному. Если основанием группировки выступает непрерывный признак, то одно и то же значение признака выступает и верхней, и нижней границами у двух смежных интервалов. Т.о., верхняя граница i-го интервала равна нижней границе i+1-го интервала. При таком обозначении границ может возникнуть вопрос, в какую группу включать единицы объекта, значения признака у которых совпадают с границами интервалов. Обычно нижняя граница формируется по принципу «включительно», а верхняя – по принципу «исключительно». Если в основании группировки лежит дискретный признак, то нижняя граница i-го интервала равна верхней границе i-1-го интервала, увеличенной на 1. Неравные интервалы применяются в статистике, когда значения признака варьируют неравномерно и в значительных размерах. 4. Статистические ряды распределения, их виды. Основные характеристики рядов распределения.

Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности. В зависимости от того, какой признак (количественный или качественный) взят за основу группировки данных, различают соответственно типы рядов распределения. Если за основу группировки взят качественный признак, то такой ряд распределения называют  атрибутивным(распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.). Если ряд распределения построен по количественному признаку, то такой ряд называют  вариационным. Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу). Графически ряды распределения изображаются в виде: 1) гистограмма – график, по которому интервальный вариационный ряд изображается в виде смежных друг с другом столбиков. (По оси Ох – границы интервалов, по Оу – частота интервала). 2) полигон распределения – график, на котором график распределения изображается в виде линейной диаграммы. (По Ох – значение варьируемого признака, по Оу – частота). 3) кумулята – график, на котором по Ох – значения варьируемого признака или верхние границы интервалов, а по Оу – накопленные частоты. 4) огива – а) график, на котором по Ох – значения варьируемого          признака, по Оу – частость признака;     б) график, на котором по Ох – накопленная частота, по Оу        – значения варьируемого признака. В вариационных рядах существует определенная связь в изменении частот и значений варьирующего признака: с увеличением варьирующего признака величина частот вначале возрастает до определенной величины, а затем уменьшается. Такого рода изменения называются закономерностями распределения. Важные свойства кривой распределения – это степень ее асимметрии, высоко– или низковершинность, которые в совокупности характеризуют форму или тип кривой распределения. Важная задача – это определение формы кривой. Характер общего распределения предполагает оценку степени его однородности и вычисление показателей асимметрии и эксцесса. Симметричным называют распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка. Общим является нормальное распределение, которое может быть представлено графически в виде симметричной куполообразной кривой. Куполообразная форма кривой показывает, что большинство значений концентрируется вокруг центра измерения, и в действительно симметричном одновершинном распределении средняя, мода и медиана совпадут. Закон нормального распределения предполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя. Теоретической кривой распределения называют кривую распределения, которая выражает общую закономерность данного типа. В кривой нормального распределения отражается закономерность, которая возникает при взаимодействии множества случайных причин. Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. Оценка показателей асимметрии и эксцесса дает возможность сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.

5. Виды абсолютных величин, единицы измерения и способы получения. Относительные величины, их виды, способы расчета. Относительные величины планового задания, структуры, динамики, интенсивности, координации, сравнения и методы их исчисления и анализа.

Абсолютные величины бывают экономически простыми (численность магазинов, работников) и экономически сложными (объем товарооборота, размер основных фондов). Абсолютные величины – всегда числа именованные, имеют определенную размерность, единицы измерения. В статистической науке применяются натуральные, денежные (стоимостные) и трудовые единицы измерения. Единицы измерения называют натуральными, если они будут соответствовать потребительским или природным свойствам предмета, товара и будут выражены в физических весах, мерах длины и т. п. В статистической практике натуральные единицы измерения могут быть составными. Применяют условно-натуральные единицы измерения при суммировании количества разнородных товаров, продуктов. Абсолютные величины используют в практике торговли, применяют в анализе и прогнозировании коммерческой деятельности. На основе этих величин в коммерческой деятельности составляют хозяйственные договоры, оценивают объем спроса на конкретные изделия и т. д. Абсолютными величинами измеряются все стороны общественной жизни. Абсолютные величины по способу выражения размеров изучаемых процессов подразделяются на: индивидуальные и суммарные, они в свою очередь относятся к одному из видов обобщающих величин. Размеры количественных признаков у каждой статистической единицы характеризуют индивидуальные абсолютные величины, а также они являются базой при статистической сводке для соединения отдельных единиц статистического объекта в группы. На их основе получают абсолютные величины, в которых можно выделить показатели объема признаков совокупности и показатели численности совокупности.

Относительные величины – это показатель, который представляет собой частное от деления двух статистических величин и характеризует количественное соотношение между ними. Для расчета относительных величин в числитель ставится сравниваемый показатель, который будет отражать изучаемое явление а в знаменателе отражается показатель, с которым и будет производиться это сравнение, он является основанием или базой для сравнения. База сравнения – это своеобразный измеритель. Основание имеет результат отношения в зависимости от количественного (числового) значения, который выражается в: коэффициенте, процентах, промилле или децимилле.

Если база сравнения принимается за единицу, то относительная величина является коэффициентом и показывает, во сколько раз изучаемая величина больше основания. Если базу сравнения принять за 100%, то результат вычисления относительной величины будет выражен в процентах.

Если базу сравнения принимают за 1000, то результат сравнения выражается в промилле (%0). Относительные величины могут быть выражены и децимилле, если основание отношения равно 10 000.

В зависимости от цели статистического исследования относительные величины подразделяются на следующие виды: выполнение договорных обязательств; относительные величины, характеризующие структуру совокупности; относительные величины динамики; сравнения; координации; относительные величины интенсивности.

Относительные показатели планового задания (ОППЗ) используются для перспективного планирования деятельности субъекта финансово–хозяйственной сферы и т.д.

ОППЗ рассчитывается следующей формулой:

Относительные величины структуры – это показатели, характеризующие долю от состава изучаемых совокупностей. Относительная величина структуры определяется отношением абсолютной величины отдельного элемента статистической совокупности к абсолютной величине всей совокупности, т. е. как отношение части к общему (целому), и характеризует удельный вес части в целом, в форме процента.

Относительные величины динамики характеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Рассчитывается относительная величина динамики как отношение уровня признака в определенный период или момент времени к уровню того же признака в предшествующий период или момент времени, т. е характеризует изменение уровня определенного явления во времени. Относительные величины динамики называются темпами роста:

Именованные величины выражаются в относительных величинах интенсивности:

Относительная величина интенсивности = абсолютная величина изучаемого явления / абсолютная величина, характеризующая объем среды, в которой распространяется явление

Относительные показатели координации (ОПК) – это соотношение одной части совокупности к другой части этой же совокупности:

ОПК = уровень, характеризующий i – ую часть совокупности / уровень, характеризующий часть совокупности, выбранную в качестве базы сравнения

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]