Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shablon_prakt_ВАНО222.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
8 Mб
Скачать

Практическая работа №5 «Запоминающие устройства.»

 

  1. По схеме сделать класификацию понятий пк необходимо расписать для каждой разновидности?

2D

Организация ЗУ типа 2D обеспечивает двух координатную выборку каждого запоминающего элемента. Основу ЗУ составляет плоская матрица из запоминающих элементов, сгруппированых в 5k ячеек по n разрядов. Обращение к ячейке задается k-разрядным адресом, выделение разрядов производится разрядными линиями записи и считывания. Адрес ячейки i поступает на схему адресного формирователя АдрФ, управляемого сигналами "Чтение" и "Запись". Основу адресного формирователя составляет дешифратор с 5k выходами, который при поступлении на его входы адреса формирует сигнал для выборки линии i. При этом под действием сигнала "Чтение" формируется сигнал, настраивающий запоминающий элемент на выдачу сигнала состояния, а под действием сигнала "Запись" - соответственно на запись. Выделение разряда j в i-ом слове производится второй координатной линией. При записи по линии j от усилителя записи поступает сигнал, устанавливающий выбранный для записи элемент в 0 или 1. При считывании на усилитель считывания по линии j поступает сигнал о состоянии элемента. Используемые запоминающие элементы должны допускать объединение выходов для работы на общую линию с передачей сигналов только от выбранного элемента.

Каждая адресная линия передает три значения сигнала:

1) выборка при записи, 2)выборкапри считывании, 3) отсутствие выборки.

Каждая разрядная линия записи передает в запоминающий элемент записываемый бит информации, а разрядная линия считывания считываемый бит информации. Линии записи и считывания могут быть объединены в одну при использовании элементов, допускающих объединение выхода со входом записи. Совмещение функций записи и считывания на разрядной линии широко используется в современных полупроводниковых ЗУ. Запоминающие устройства типа 2D являются быстродействующими и достаточно удобными для реализации. Однако они неэкономичны по объему оборудования из-за наличия дешифратора с большим числом выходов. Поэтому структура 2D применяется только в ЗУ небольшой емкости.

3D

Некоторые запоминающие элементы имеют не один, а два входа выборк. Чтобы выполнялась операция выборки, требуется наличие сигнала выборки на обеих входах. Использование таких элементов позволяет строить ЗУ с трехкоординатным выделением ячеек.Запоминающий массив ЗУ типа 3D представляет собой пространственную матрицу, составленную из n плоских матриц, представляющих собой запоминающий массив для отдельных разрядов ячеек памяти. Запоминающие элементы для разряда сгруппированы в квадратную матрицу.Для адресной выборки запоминающего элемента выдается две его координаты в массиве. Код ячейки памяти разделяется на старшую и младшую части, каждая из которых поступает на свой адресный формирователь. Адресные формирователи выдают код в соответствующие адресные линии. В результате в массиве оказывается выбранным элемент, находящийся на пересечении двух адресных линий. Адресные формирователи управляются сигналами "Чтение" и "Запись" и в зависимости от них выдают сигналы выборки для считывания или для записи. При считывании сигнал о состоянии выбранного элемента поступает по линии считывания в усилитель. При записи в запоминающий элемент будет занесена информация, поступившая с соответствующего усилителя записи.Для полупроводниковых ЗУ характерно объединение в одну линию разрядных линий записи и считывания.Запоминающие устройства типа 3D более экономичны, чем ЗУ 2D.Однако элементы с тремя входами, используемыми при записи не всегда удается реализовать.

2DM

ЗУ структуры 20М (20 модифицированная) (рис. 4.5, а) для матрицы запоминающих элементов с адресацией от дешифратора ОСх имеет как бы характер структуры 20: возбужденный выход дешифратора выбирает целую строку. Однако в отличие от структуры 20, длина строки не равна разрядности хранимых слов, а многократно ее превышает. При этом число строк матрицы уменьшается и, соответственно, уменьшается число выходов дешифратора. Для выбора одной из строк служат не все разряды адресного кода, а их часть An-1 ••• Ak. Остальные разряды адреса (от Ak-1 до ДО) используются, чтобы выбрать необходимое слово из того множества слов, которое содержится в строке. Это выполняется с помощью мультиплексоров, на адресные входы которых подаются коды Ak-l··· ДО. Длина строки равна n12k, где m- разрядность хранимых слов. Из каждого "отрезка" строки длиной 2k мультиплексор выбирает один бит. На выходах мультиплексоров формируется выходное слово. По разрешению сигнала CS, поступающего на входы ОЕ управляемых буферов с тремя состояниями, выходное слово передается на внешнюю шину. На рис. 4.5, а для большей наглядности структура 20М показана на примере ROM. На рис 4.5, б структура 20М в более общем виде показана для ЗУ типа RAM с операциями чтения и записи. Из матрицы М по-прежнему считывается "длинная" строка.

VRAM

Оперативная память для временного хранения изображения (буфер кадра), сформированного видеоадаптером и передаваемого на видеомонитор. Является двухпортовой памятью — может одновременно записывать данные для изменения изображения в то время, когда видеоадаптер непрерывно считывает содержимое для прорисовки его на экране. Технологии (VRAM, WRAM, MDRAM и SGRAM), используемые в видеоадаптерах, относятся к динамической оперативной памяти, работа которой имеет ряд особенностей. Во-первых, доступ к ней осуществляется достаточно крупными блоками. Во-вторых, она должна быстро перезаписывать большие объемы данных без прерывания процедуры считывания, так как образ картинки, формируемой на экране монитора, постоянно считывается из этой памяти с частотой кадровой развертки монитора, и одновременно в эту же память операционная система осуществляет запись, в результате чего происходит изменение изображения. Эту задачу наиболее эффективно решает так называемое двухпортовое ОЗУ, для которой возможно одновременное считывание данных системой развертки и запись. Двухпортовая память представлена дорогостоящей VRAM и более дешевой и быстрой WRAM. В системах с двухпортовой памятью увеличение частоты развертки не приводит к снижению производительности видеоадаптера, поэтому в профессиональных моделях, рассчитанных на использование с большими (19 дюймов и более) мониторами, применяется преимущественно такая видеопамять. Для ускорения доступа к памяти со стороны графического ускорителя (что особенно важно в 3D-акселераторах ) используется либо память MDRAM, использующая распараллеливание операций доступа к данным между большим количеством банков памяти, либо синхронная память SGRAM (аналог SDRAM, оптимизированный для задач видеопамяти), либо обычная SDRAM.

FIFO

FIFO (акроним First In, First Out — «первым пришёл — первым ушёл») — способ организации и манипулирования данными относительно времени и приоритетов. Это выражение описывает принцип технической обработки очереди или обслуживания конфликтных требований путём упорядочения процесса по принципу: «первым пришёл — первым обслужен» (ПППО). Тот, кто приходит первым, тот и обслуживается первым, пришедший следующим ждёт, пока обслуживание первого не будет закончено, и так далее. Этот принцип аналогичен поведению лиц, стоящих в очереди, когда люди получают обслуживание в том порядке, в котором они занимали очередь. То же самое происходит, например, на нерегулируемом перекрёстке, когда водители ожидают своей очереди на продолжение движения (в американских ПДД нет правила «помеха справа», приоритет определяется по принципу FIFO). ПППО также используется как сокращённое название для алгоритма FIFO планирования работы операционной системы, по которому процессорное время выделяется каждому процессу в порядке их поступления на обслуживание. В более широком смысле, абстракция LIFO или Last-In-First-Out («последним пришёл — первым ушёл») является противоположностью абстракции FIFO. Разница, возможно, станет яснее, если принять во внимание реже используемый синоним FILO, означающий First-In-Last-Out («первым пришёл — последним ушёл»). В сущности, обе абстракции являются конкретными случаями более общего понятия работы со списком. Разница не в списке (данных), а в правиле доступа к содержимому. В первом случае добавление делается к одному концу списка, а снятие с другого, во втором случае добавление и снятие делается на одном конце. Вариантом очереди является очередь с приоритетом, для которой нельзя использовать название FIFO, потому что в этом случае обработка структуры данных происходит по другому принципу. Теория массового обслуживания охватывает более общее понятие очереди, а также взаимодействие между очередями, обслуживание в которых осуществляется по принципу «строго-FIFO». Для обозначения этого принципа также используется аббревиатура FCFS (first come, first served — «первым пришёл, первым обслужен»).

LIFO.

LIFO (акроним Last In, First Out, «последним пришёл — первым ушёл») — способ организации и манипулирования данными относительно времени и приоритетов. В структурированном линейном списке, организованном по принципу LIFO, элементы могут добавляться и выбираться только с одного конца, называемого «вершиной списка».[1] Структура LIFO может быть проиллюстрирована на примере стопки тарелок: чтобы взять вторую сверху, нужно снять верхнюю, а чтобы снять последнюю, нужно снять все лежащие выше.

Полупостоянная CMOS.

Кроме обычной оперативной памяти, в компьютере также имеется небольшой участок памяти для хранения параметров конфигурации компьютера. Его часто называют CMOS-памятью, поскольку эта память выполняется по CMOS-технологии (Complementary Metal-Oxide Semiconductor), обладающим низким энергопотреблением. Содержание CMOS-памяти не изменяется при включении электропитания компьютера, поскольку для ее питания используется специальный аккумулятор. Для изменения параметров настройки компьютера в BIOS содержится программа настройки конфигурации компьютера SETUP.

SRAM.

Статическая оперативная память с произвольным доступом (SRAM, static random access memory) — полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние без регенерации, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM — random access memory) — возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM — sequential access memory).

 1. Кэш 1-го уровня (Level 1 cache, или L1) Кэш 1-го уровня, или первичный кэш, находится на плате центрального процессора и используется для временного хранения команд и данных, организованных в блоки по 32 байта. Первичный кэш — самая быстрая форма памяти. Поскольку он встраивается в чип, он обеспечивает минимальную задержку интерфейса с АЛУ, однако ограничен в размере.

   L1-кэш реализуется, используя принцип статической оперативной памяти (SRАМ) и длительное время в среднем имел размер 16 Кбайт. SRАМ изготовляется по технологии, подобной микропроцессору: фотогравирование кремния. Каждый бит SRАМ требует от четырех до шести транзисторов, что и объясняет, почему SRАМ занимает намного больше места по сравнению с DRАМ, который требует только один транзистор (плюс конденсатор). Процессор Р55 Рentium ММХ, выпущенный в начале 1997 г., содержал кэш 1-го уровня, увеличенный в размере до 32 Кбайт. Процессоры АМD К6 и Cyrix М2, вышедшие в том же году, повысили ставку далее, обеспечивая объем кэша 1-го уровня уже в 64 Кбайт.Современные процессоры, например Intel Core 2 Duo E4600 2.4 ГГц, обеспечивают такой же объем кэша 1-го уровня, но в два раза больше, т.к. двухядерные.

 2. Кэш 2-го уровня (Level 1 cache, или L1) Кэш 2-го уровня (вторичный кэш) использует ту же самую логику управления, что и кэш 1-го уровня, и также относится к типу SRAM.Кэш 2-го уровня обычно имеет два размера — 256 или 512 Кбайт и помещается на системной плате в гнезде типа Card Edge Low Profile (CELP) или в модуле «кэш-на-плате» («cache on a stick», СОАSТ). Последний напоминает SIММ, но немного короче и включает гнездо СОАSТ, которое обычно расположено близко к процессору и напоминает слот РСI. В процессоре Pentium, однако, кэш 2-го уровня помещался на чипе процессора непосредственно.Цель кэша 2-го уровня состоит в том, чтобы поставлять сохраненную информацию на процессор без какой-либо задержки (состояния ожидания). Для этой цели интерфейс шины процессора имеет специальный протокол передачи, названный групповым (или пакетным) режимом (burst mode). При этом обычно используется синхронный тип памяти, управляемой тактовым генератором ЦП. Цикл пакета состоит из четырех передач данных, где на адресную шину выводится адрес только первых 64 бит. Обычно кэш 2-го уровня — это синхронная пакетно-конвейерная память (Pipelined Burst Static RAM PB SRAM).Этот вид памяти характеризуется временем доступа в диапазоне 4,5—8 нс и имеет временную схему пакета 3-1-1-1 для шины с быстродействием до 133 МГц. Эти числа (или циклы чтения/записи) относятся к количеству тактов процессора для каждого доступа при чтении в пакетном режиме. Например, 3-1-1-1 означает, что для первого слова требуется три такта ( включая два такта ожидания) и по одному такту — для каждого последующего слова.

Для скоростей шины до 66 МГц синхронная пакетная память (Synchronous Burst Static RAM, Sync SRAM), предлагает даже большую производительность — 2-1-1-1. Однако при скорости шины выше 66 МГц его схема понижается до 3-2-2-2, что значительно медленнее, чем РВ SRАМ.Используется также асинхронный кэш, который более дешев (но медленнее, потому что не привязан к тактам ЦП). Асинхронная SRАМ обеспечивает быстродействие от 12 до 20 нс, и при частоте шины ЦП от 50 до 66 МГц схема пакета имеет вид: 3-2-2-2 (два такта ожидания для начального цикла и по одному такту ожидания для следующих трех передач). Современные процессоры обладают кэшом 2-го уровня порядка 2048 Кб.

DRAM.

DRAM (Dynamic random access memory, Динамическая память с произвольным доступом) — тип энергозависимой полупроводниковойпамяти с произвольным доступом; DRAM широко используемая в качестве оперативной памяти современных компьютеров, а также в качествепостоянного хранилища информации в системах, требовательных к задержкам.Физически DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, строку от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количествастрок и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.Как запоминающее устройство, DRAM представляет собой модуль памяти различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъёма, необходимого для подключения модуля к материнской плате.

DIPP

DIP- корпус —это исторически самая древняя реализация DRAM. DIP-корпус соответствует стандарту IC. Обычно это маленький черный корпус из пластмассы, по обеим сторонам которого располагаются металлические контакты

Микросхемы (по-другому, чипы) динамического ОЗУ устанавливаются так называемыми банками. Банки бывают на 64, 256 Кбайт, 1 и 4 Мбайт. Каждый банк состоит из девяти отдельных одинаковых чипов. Из них восемь чипов предназначены для хранения информации, а девятый чип служит для проверки четности остальных восьми микросхем этого банка.Чипы памяти бывают одно и четырехразрядными, и иметь емкость 64 Кбит, 256 Кбит, 1 и 4 Мбит.Следует отметить, что памятью с DIP-корпусами комплектовались персональные компьютеры с микропроцессорами i8086/88, i80286 и, частично, i80386SX/DX. Установка и замена этого вида памяти была нетривиальной задачей. Мало того, что приходилось подбирать чипы для банков памяти одинаковой разрядности и емкости. Приходилось прилагать усилия и смекалку, чтобы чипы правильно устанавливались в разъемы. К тому же необходимо было не разрушить контакты механически, не повредить их инструментом, статическим электричеством, грязью и т.п. Поэтому уже в компьютерах с процессором i80386DX эти микросхемы стали заменять памяти SIPP и SIMM.

SIPP

Одной из незаслуженно забытых конструкций модулей памяти являются SIPP-модули. Эти модули представляют собой маленькие платы с несколькими напаянными микросхемами DRAM.SIPP происходит от буржуйских слов Single Inline Package. SIPP-модули соединяются с системной платой с помощью контактных штырьков. Под контактной колодкой находятся 30 маленьких штырьков (рис. 1), которые вставляются в соответствующую панель системной платы.Модули SIPP имели определенные вырезы, которые не позволяли вставить их в разъемы неправильным образом. По некоторым мнениям, этот вид модулей лидировал по простоте их установки на системную плату.

Fast Page Mode DRAM

Технология FPM DRAM в свое время позволила значительно — по сравнению с более ранней реализацией DRAM — ускорить доступ к последовательно расположенным (в пределах страницы) ячейкам памяти. Напомним, что в матрице динамической памяти считывание в статический буфер происходит для всей строки целиком, конкретный же бит выбирается уже адресом столбца. Понятно, что если следующий подлежащий считыванию бит находится в той же строке, то нет смысла читать ее в буфер еще раз. FPM DRAM использовалась в компьютерах класса до Pentium-100. Типичное значение времени доступа — 60-70 нс. FPM DRAM сменила обычную DRAM, применявшуюся в компьютерах на базе микропроцессоров 8086/88 и 80286, и использовалась в персональных компьютерах примерно до 1994 г .

Extended Data Out DRAM

В отличие от обычной памяти со страничной организацией EDO DRAM оснащается дополнительным набором регистров-«защелок», благодаря которым данные на выходе могут удерживаться даже в течение следующего запроса. Такого эффекта можно добиться на FPM DRAM только в режиме чередования адресов. Напомним, что в любом обращении к памяти можно выделить три фазы — 1) начало доступа, 2) период, когда данные становятся действительными, и 3) непосредственно передачу. Эти фазы повторяются последовательно для каждой ячейки в считываемой строке. В случае с EDO-памятью временные параметры (а следовательно, и быстродействие) улучшаются за счет исключения циклов ожидания в фазе готовности данных. Типичные времена доступа — 45, 50, 60 и 70 нс.

Burst EDO DRAM

В памяти типа BEDO, в отличие от EDO DRAM, выборка четырех операндов команды передачи данных происходит автоматически. BEDO DRAM была разработана как альтернатива синхронной памяти, однако не получила поддержки разработчиков наборов микросхем, и к тому же у нее была невысокая максимальная тактовая частота (66 МГц), так что она не нашла широкого распространения.Невысокое быстродействие подсистемы памяти с модулями DRAM было обусловлено невозможностью точной синхронизации частоты процессора и скорости обработки данных в ячейках памяти. При считывании нельзя было сказать, откуда в следующий раз будет браться информация — из другого банка или из соседней ячейки, — и сколько времени на это потребуется. К тому же во время обращения к памяти процессор не мог работать с другими компонентами системы, что, естественно, снижало производительность.

Synchronous DRAM

Этот тип памяти позволил еще больше поднять быстродействие. SDRAM использует ступенчатую конвейерную архитектуру и, кроме того, внутренний доступ типа «пинг-понг» к блокам памяти с чередованием адресов. Синхронизация работы памяти SDRAM осуществляется обычно частотой системной (внешней) шины. SDRAM работает примерно так же, как и стандартная DRAM, — осуществляя доступ к строкам и колонкам ячеек данных. Но в SDRAM применен специфичный механизм синхронного функционирования банков ячеек, который в сочетании с пакетным режимом эффективно устраняет состояния задержек и ожидания. Когда процессору необходимо получить данные из оперативной памяти, он может получить их в требуемый момент. Таким образом, хотя фактическое время обработки данных не изменилось, эффективность выборки и передачи данных повысилась. Благодаря жесткой синхронизации контроллер памяти точно «знает», когда запрошенная информация будет обработана. Это освобождает процессор от состояний ожидания. Задержки в SDRAM эффективно устраняются благодаря синхронному функционированию блоков ячеек. Поскольку работа памяти и процессора согласуется системным таймером, то в конце каждого такта на выводах модуля памяти появляется сигнал готовности данных, следовательно, процессорное время тратится лишь на циклы чтения-записи. Кроме того, конвейерная адресация обеспечивает доступ к следующему блоку запрошенной информации до завершения обработки предыдущего.

Double Data Rate SDRAM

Вообще говоря, обычную синхронную память правильнее называть SDR (Single Data Rate) SDRAM. Синхронная память с удвоенной скоростью (DDR) сохранила архитектуру, количество банков и сам технологический процесс производства SDRAM, однако имеющиеся в ней схемотехнические усовершенствования позволяют существенно увеличить ее быстродействие. В частности, здесь используется еще более жесткая синхронизация работы устройства. В функциональную структуру введены схемы фазовой автоподстройки частоты DLL (Delay Locked Loop), обеспечивающие для сигналов стробирования данных цикл с фиксированной задержкой. Эти сигналы помогают контроллеру памяти более точно синхронизировать данные, поступающие от разных модулей памяти, находящихся в одном банке. Микросхемы DDR SDRAM фактически увеличивают скорость доступа к данным вдвое по сравнению с SDRAM, используя при этом одну и ту же частоту. Дело в том, что применение DDR SDRAM дает возможность читать информацию как по переднему, так и по заднему фронту сигнала таймера. Кроме того, частота операций повышается за счет использования интерфейсных логических схем с низким питающим напряжением. Если для SDRAM обычно используются схемотехнические решения на базе низкоуровневой транзисторно-транзисторной логики LVTTL (Low Volt Transistor-to-Transistor Logic) с напряжением питания 3,3 В, то в DDR SDRAM применяется специальная логика SSTL (Stub Series Terminated Logic) с напряжением 2,5 В.

SLDRAM.

Память SLDRAM разработана для применения в самом широком спектре ПК — от настольных и мобильных компьютеров до высокопроизводительных рабочих станций и серверов. Это достигается благодаря высокой пропускной действительной способности и эффективности, маленьким задержкам, низкому энергопотреблению, легкой возможности наращивания объема и расширяемости (масштабирования) для обеспечения широкой и/или глубокой иерархии конфигурации подсистемы памяти. Микросхема SLDRAM предоставляет собой внутрикристальную конфигурацию множественных независимых логических банков, обеспечивает быстрые циклы обращения шины (Bus Turnaround) при проведении операций чтения/записи и способность работать в полностью конвейеризированном пакетном режиме. Адресация SLDRAM происходит согласно всем основным требованиям, предъявляемым к динамической памяти в целом, однако имеет довольно серьезные особенности, основанные на полностью пакетном протоколе, что исключает совместимость с любыми другими архитектурами, делая данную уникальной.

ESDRAM

Для преодоления некоторых проблем с задержкой сигнала, присущих стандартным DRAM-модулям, производители решили встроить небольшое количество SRAM в чип, т. е. создать на чипе кэш. Одним из таких решений, заслуживающих внимания, является ESDRAM от Ramtron International Corporation.

ESDRAM - это по существу SDRAM плюс немного SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кэш-памяти, DRAM-кэш предназначен для хранения наиболее часто используемых данных. Следовательно, уменьшается время доступа к данным медленной DRAM.

DRDRAM

Чипы Direct Rambus DRAM составляют часть подсистемы Rambus, запоминающую данные. Все устройства в системе электрически расположены на канале между контроллером и терминатором. Устройства Direct Rambus могут только отвечать на запросы контроллера, который делает их шину подчиненной или отвечающей. Устройства можно разделить на две части.

Технология Direct Rambus представляет собой третий этап развития памяти RDRAM. Впервые память RDRAM появилась в 1995 г., работала на частоте 150 МГц и обеспечивала пропускную способность 600 Мбайт/с. Она использовалась в станциях SGI Indigo2 IMPACTtm, в приставках Nintendo64, а также в качестве видеопамяти. Следующее поколение RDRAM появилось в 1997 г. под названием Concurrent RDRAM. Новые модули были полностью совместимы с первыми. Но за год до этого события в жизни компании произошло не менее значимое событие. В декабре 1996 г. Rambus, Inc. и Intel Corporation объявили о совместном развитии памяти RDRAM и продвижении ее на рынок персональных компьютеров.

FDD

Накопитель на гибких магнитных дисках (англ. floppy disk drive) — дисковод, предназначенный для считывания и записи информации с дискеты.

Приводы (позиционирования головок и вращения) и система считывания-записи управляется электронной схемой, размещённой на печатной плате, которая находится внутри корпуса дисковода. В отечественной терминологии система управления называлась КНГМД — контроллер накопителя на гибких магнитных дисках.

Накопители гибких дисков, равно как и сами носители — дискеты, были массово распространены с 1970-х и до конца 1990-х годов. В XXI веке НГМД всё сильнее уступают более ёмким CD, DVD и удобным в использовании флеш-накопителям.

HDD

Накопи́тель на жёстких магни́тных ди́сках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге «винче́стер» — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные)пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома — магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[1]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

ZIP

Iomega Zip — семейство накопителей на гибких магнитных дисках, аналоги дискет, имеющие большую ёмкость. Разработаны компанией Iomega[1] в конце 1994. Изначально имели ёмкость около 100 мегабайт, в поздних версиях она была увеличена до 250 и 750 мегабайт.

Формат стал более популярен, чем семейство super-floppy, но так и не получил такого же статуса, как обычные 3.5-дюймовые дискеты. Он был вытеснен USB флеш дисками и перезаписываемыми компакт (CD) и DVD-дисками, и практически не используется в настоящее время. Бренд Zip также использовался для внутренних и внешних записывающих дисководов CD под названиями Zip-650 и Zip-CD.

JAZ

Накопитель Jaz - это записывающее - считывающее устройство, использующее сменные диски емкостью 1-2 ГБ. В отличие от накопителя Zip, картридж Jaz - это фактически сменный жесткий диск на винчестере. Накопитель Jaz обрабатывает данные с такой же скоростью, как и винчестер, однако при этом для его подключения обязательно требуется SCSI-интерфейс. Записав данные на сменный диск Jaz (картридж), вы можете удалить их и снова записать, используя любой накопитель Jaz.

Хотите нарастить емкость винчестера без его замены или сохранить данные жесткого диска? Достаточно подключить накопитель Jaz к разъему SCSI - и можно сделать винчестер практически безразмерным, добавляя следующий диск Jaz.

Накопители Jaz могут быть как внешние, так и внутренние, которые легко устанавливаются в любой 3,5" разъем. Подходящее устройство для презентаций, видео, но его достоинства скорее перевешиваются недостатками. Прежде всего это:

- высокая стоимость дисковода и диска Jaz - соответственно от $300 и $75;

- необходимость использования только интерфейса SCSI.

Видимо, это явилось главной причиной, что компания Iomega решила отказаться от производства Iomega Jaz. Хотя поддержка внешних устройств будет продолжаться и для новых ОС будут выпускаться драйверы.

CD-ROM

CD-ROM (англ. Compact Disc Read-Only Memory, читается: «сиди́-ром») — разновидность компакт-дисков с записанными на них данными, доступными только для чтения (read-only memory — память «только для чтения»). CD-ROM — доработанная версия CD-DA (диска для хранения аудиозаписей), позволяющая хранить на нём прочие цифровые данные (физически от первого ничем не отличается, изменён только формат записываемых данных). Позже были разработаны версии с возможностью как однократной записи (CD-R), так и многократной перезаписи (CD-RW) информации на диск. Дальнейшим развитием CD-ROM-дисков стали дискиDVD-ROM.

Диски CD-ROM — популярное и самое дешёвое средство для распространения программного обеспечения, компьютерных игр,мультимедиа и прочих данных. CD-ROM (а позднее и DVD-ROM) стал основным носителем для переноса информации междукомпьютерами, вытеснив с этой роли флоппи-диск (сейчас он уступает эту роль более перспективным твердотельным носителям).

Формат записи на CD-ROM также предусматривает запись на один диск информации смешанного содержания — одновременно как компьютерных данных (файлы, ПО, чтение доступно только на компьютере), так и аудиозаписей (воспроизводимых на обычномпроигрывателе аудио компакт-дисков), видео, текстов и картинок. Такие диски, в зависимости от порядка следования данных, называются усовершенствованными (англ. Enhanced CD) либо Mixed-Mode CD.

CD-R/RW

CD-RW является дальнейшим логическим развитием записываемого лазерного компакт-диска CD-R, однако, в отличие от него, позволяет многократно перезаписывать данные. Этот формат был представлен в 1997 году и в процессе разработки назывался CD-Erasable (CD-E, Стираемый Компакт-Диск). CD-RW во многом похож на CD-R, но его записывающий слой изготавливается из специального сплава халькогенидов, который при нагреве выше температуры плавления переходит из кристаллического агрегатного состояния в аморфное. Фазовые переходы между различными состояниями вещества всегда сопровождаются изменением физических параметров среды. Нормальным состоянием твёрдых тел и основным в окружающей нас природе является кристаллическое.

DVD-ROM

Опти́ческий при́вод — устройство, имеющее механическую составляющую, управляемую электронной схемой и предназначенное для считывания и (в большинстве современных моделей) записи информации с оптических носителей информации в видепластикового диска с отверстием в центре (компакт-диск, DVD и т. д.); процесс считывания/записи информации с диска осуществляется при помощи лазера.

DVD-R/RW

DVD+RW поддерживается Hewlett-Packard, Mitsubishi Chemical, Philips, Ricoh, Sony, Thomson Multimedia и Yamaha. Хотя все они являются членами DVD Forum, стандарт DVD+RW этой организацией признан не был. Диски DVD+RW читаются большинством современных проигрывателей и приводов DVD-ROM, но как и DVD-RW обладают низкой отражающая способностью. Преимущества DVD+RW по сравнению с DVD-RW: - дискам DVD+RW не требуется картридж, как и обычным компакт-дискам. - накопители DVD+RW используют технологию CLV для чтения последовательных данных (таких, как фильмы) и технологию CAV для чтения данных в случайном порядке. Это повышает производительность накопителя. 

Blu-ray Disc, BD (англ. blue ray — синий луч и disc — диск; написание blu вместо blue — намеренное) — формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высокой чёткости. Стандарт Blu-ray был совместно разработан консорциумом BDA. Первый прототип нового носителя был представлен в октябре 2000 года. Современный вариант представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года. Коммерческий запуск формата Blu-ray прошёл весной 2006 года. Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Буква «e» была намеренно исключена из слова «blue», чтобы получить возможность зарегистрировать товарный знак, так как выражение «blue ray» является часто используемым и не может быть зарегистрировано как товарный знак. С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьёзный конкурент — альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец очередной «войне форматов».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]