- •1.1.1 Пример программы, выводящей текст на экран (пример 1)
- •1.1.2 Директивы препроцессору (подключение заголовочных файлов)
- •1.1.3 Комментарии
- •1.1.4 Функции
- •1.1.5 Ввод и вывод на экран
- •1.2. Переменные и их объявление
- •1.2.1 Пример программы cложения целых чисел (пример 2)
- •1.2.2 Переменные и их объявление
- •1.3. Арифметические операторы
- •1.3.1 Примеры арифметических операций (пример 3)
- •1.3.2 Группировка подвыражений с помощью скобок
- •1.4. Логические выражения и оператор if
- •1.4.1 Условные конструкции. Пример условных конструкций (пример 4)
- •1.4.2 Логические выражения. Логические операции и, или, не (пример 5)
- •1.4.3 Типичные ошибки
- •1.4.4 Вложенные условия
- •1.5. Арифметический логический оператор (пример 6)
- •1.6. Селективные конструкции
- •1.6.1 Селективные конструкции. Пример определения оценки в зависимости от количества баллов (пример 6)
- •1.6.2 Оператор Switch. Пример меню с выбором действия (пример 7)
- •1.7. Циклы while и do…while
- •1.7.1 Цикл с предусловием while. Пример возведения в степень в цикле (пример 8)
- •1.7.2 Цикл с постусловием do...While
- •1.8. Пошаговый цикл for
- •1.8.1 Пример работы оператора for - вычисление суммы чисел (пример 9)
- •1.8.2 Пошаговый цикл for
- •1.8.3 Операторы break и continue
- •1.8.4 Пример вычисление факториала (пример 10)
- •1.9. Функции
- •1.9.1 Использование функций библиотеки stl (пример 11)
- •1.9.2 Определение новых функций
- •1.9.3 Пример функции (пример 12)
- •1.10. Размещение программ и данных в памяти
- •1.11. Ссылки и указатели
- •1.11.1. Ссылки
- •1.11.2. Указатели
- •1.11.3. Передача параметров в функцию по ссылке и указателю
- •2.2 Организация ввода/вывода
- •2.3 Строковые переменные и константы
- •2.4 Математические функции
- •3.1. Массивы
- •3.1.1. Одномерный массив
- •3.1.2. Динамическое размещение одномерного массива
- •3.1.3. Передача массива в функцию (пример 3.1)
- •3.1.4. Двумерный массив
- •3.1.5. Динамическое размещение двумерного массива (пример 3.2)
- •3.2 Контейнеры
- •3.3. Вектор vector (пример 3.3)
- •4.4. Список list
- •3.4.1. Списки
- •3.4.2. Итераторы
- •3.4.3. Пример работы со списком с использованием итераторов (пример 3.4)
- •3.5. Очереди и стек
- •3.5.1. Двусторонняя очередь deque (пример 3.5)
- •3.5.2. Стек stack
- •3.5.3. Очередь queue
- •3.6. Ассоциативные контейнеры
- •3.6.1. Контейнер map (пример 3.7)
- •3.6.2. Контейнер set (пример 3.8)
- •3.7. Алгоритмы
- •4.1 Структуры
- •4.1.1. Пример 4.1. Структура для работы с компонентами цвета
- •4.1.2. Передача абстрактных типов в функцию
- •4.1.3. Создание функций-членов для абстрактного типа данных. Пример 4.2. Структура для работы с компонентами цвета со встроенной функцией.
- •4.2. Классы
- •4.2.1. Пример 4.3. Класс Линза
- •4.2.2. Директивы препроцессору # if ! defined, # endif (проверка на повторное подключение)
- •4.2.3. Тип доступа к членам класса
- •4.2.4. Принципы объектно-ориентированного проектирования
- •4.2.5. Типы функций-членов класса
- •4.3 Конструкторы и деструкторы класса
- •4.3.1. Конструкторы
- •4.3.2. Деструктор (пример 4.4. Конструктор и деструктор класса Матрица)
- •4.3.3. Проверка правильности параметров. Исключительные ситуации
- •4.4. Модификаторы, селекторы и другие члены классов
- •4.4.1. Модификаторы и селекторы
- •4.4.2. Ключевые слова const и inline
- •4.4.3. Функции-утилиты
- •4.4.4. Сохраняемость
- •5.1. Типы наследования. Видимость членов классов
- •5.1.1. Наследование
- •5.1.2. Пример 5.1. Линза и зеркало как оптические детали
- •5.1.3. Последовательность вызова конструкторов
- •5.1.4. Типы наследования. Видимость членов классов
- •5.1.5. Множественное наследование
- •5.2. Виртуальные функции. Абстрактные классы
- •5.2.1. Виртуальные функции
- •5.2.2. Абстрактные классы
- •6. Полиморфизм
- •6.1. Перегрузка функций
- •6.1.1. Перегрузка функций
- •6.1.2. Преобразование типов
- •6.1.3. Параметры функций по умолчанию
- •6.2. Перегрузка операторов
- •6.2.1. Пример 6.1 (класс Complex (комплексное число))
- •6.2.6. Перегрузка операторов с присваиванием
- •6.2.7. Перегрузка преобразования типов
- •6.2.8. Перегрузка оператора доступа по индексу
- •6.2.9. Перегрузка операторов ввода/вывода
- •6.2.10. Неперегружаемые операторы
- •6.3. Шаблоны функций и классов
- •6.3.1. Шаблоны функций. Пример 6.2 (шаблон функции)
- •6.3.2. Шаблоны функций с несколькими параметрами. Пример 6.3 (шаблон функции с несколькими параметрами)
- •6.3.3. Шаблоны классов. Пример 6.4 (шаблон класса Комплексное число)
- •6.4. Объекты-функции. Предикаты
- •6.4.1. Объекты-функции. Пример 6.5 (использование объектов-функций)
- •6.4.2. Предикаты. Пример 6.6 (использование предикатов)
3.3. Вектор vector (пример 3.3)
Вектор - одномерный массив проиндексированных элементов. Вектор представляет собой пример наиболее полного стандартного контейнера. Для использования вектора стандартной библиотеки необходимо подключить файл с описанием вектора. При объявлении вектора (так же и других контейнеров) в треугольных скобках указывается тип данных элементов, хранящихся в векторе. Доступ к элементам вектора можно осуществлять через квадратные скобки, так же как и для обычных массивов.
Доступ к функциям вектора производится через оператор ".". Вектор – это особый тип данных, шаблон класса. Подробнее о классах и шаблонах см.главу 4 и раздел 5.4.
Для вектора не обязательно сразу указывать его размер, размер вектора можно изменить в любом месте программы при помощи функции resize(), а чтобы узнать размер вектора можно воспользоваться функцией size().
#include <vector>
using namespace std;
vector<double> x; // создание вектора
x.resize(10); // изменение размера вектора
x.resize(x.size()+100); // изменение размера вектора
double sum=0.0;
for(int i=0; i<x.size(); i++)
{
sum+=x[i]; //доступ по индексу
}
Полный список функций вектора см. Приложение 5.
Рассмотрим более подробно пример работы с вектором. Обратите внимание, что в этом примере вектор передается в функцию по ссылке, т.к. классы и массивы большого объема нерационально копировать каждый раз при вызове функции, что происходит при передачи по значению. Если функция не должна изменить содержимое контейнера, дополнительно указывается ключевое слово const.
/////////////////////////////////////////////////////////////////////////////
// Прикладное программирование
// Пример 3.3. Пример работы с контейнером vector
//
// Кафедра Прикладной и компьютерной оптики, http://aco.ifmo.ru
// СПб НИУ ИТМО
/////////////////////////////////////////////////////////////////////////////
#include <iostream> // подключение библиотеки ввода-вывода
#include <vector> // подключение описания вектора
#include <ctime> // для работы с таймером
using namespace std; // подключение стандартного пространства имен для использования библиотек
// прототипы функций
int min(const vector<double>& data);
void fill_rand(vector<double>& data, double max, double min);
/////////////////////////////////////////////////////////////////////////////
// пример передачи вектора в функцию
// функция находит индекс минимального числа в векторе
int min(const vector<double>& data)
{
int index=0;
double min=data[0];
for(int i=1; i<data.size(); ++i)
{
if(data[i]<min)
{
min=data[i];
index=i;
}
}
return index;
}
/////////////////////////////////////////////////////////////////////////////
// Функция заполнения вектора случайными числами
// data - вектор для заполнения
// max - максимальное число случайного диапазона
// min - минимальное число случайного диапазона
void fill_rand(vector<double>& data, double max, double min)
{
// устанавливает стартовую точку для генерации
// случайных чисел по текущему времени
srand((unsigned) clock());
for(int i=0; i<data.size(); ++i)
{
data[i]=(rand()*(max-min))/RAND_MAX+min;
}
}
/////////////////////////////////////////////////////////////////////////////
void main()
{
vector<double> x; // создание вектора
// ввод количества элементов в векторе
int n;
cout<<"input vector size: ";
cin>>n;
// 1. заполнение контейнера индексами
// заполнение контейнера
for(int i=0; i<n; i++)
{
// добавить элемент в конец контейнера
x.push_back(i);
}
// вывод всех элементов контейнера
cout<<endl<<"1. Vector filled with indexes: "<<endl;
for(int i=0; i<x.size(); i++)
{
cout<<x[i]<<" "; //доступ по индексу
}
// 2. заполнение контейнера случайными числами от 1 до 100
// очистить контейнер
x.clear();
// изменить размер
x.resize(20);
// заполнить случайными числами
fill_rand(x, 20, 80);
// вывод всех элементов контейнера
cout<<endl<<"2. Vector filled with random: "<<endl;
for(int i=0; i<x.size(); i++)
{
cout<<x[i]<<endl; //доступ по индексу
}
// вывод минимального числа в контейнере
cout<<endl<<"mininum is: "<<x[min(x)]<<endl; // x[min(x)] аналогично записи int i=min(x); x[i];
}
///////////////////////////////////////////////////////////////////////////////
При работе с вектором мы сталкиваемся с такими понятиями как размер и емкость. Размер - количество элементов, хранимых в контейнере, можно узнать с помощью функции size(), а изменить с помощью resize(). Операции push_back(), insert(), erase() также изменяют размеры вектора. Когда размеры вектора изменяются, то все его элементы могут быть перемещены в новую область памяти, поэтому хранить указатели на элементы вектора не имеет смысла и может быть опасно. Всегда нужно работать через итераторы (см.раздел 3.5).
С помощью функции empty() можно узнать о наличии элементов в контейнере. Если контейнер действительно пуст, то функция возвращает true.
bool res=x.empty(); // эквивалентно x.size() == 0
При работе с вектором можно выделить (зарезервировать) некоторую область памяти для потенциального расширения. Использование функции reserve() обеспечить выделение памяти для новых элементов контейнера. При этом вставка новых элементов или изменение размеров с помощью resize() не потребует перераспределения хранимого вектора в памяти. Определить "емкость" вектора можно с помощью функции capaсity().
