Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
работа_генетика.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.42 Mб
Скачать

Тема 2. Основы цитогенетики

Молеклярные основы наследственности человека. Кариотип человека, идиограмма, генотип и геном, хромосомный набор. Моногенное и полигенное наследование. Взаимодействие генов и сцепленное наследование признаков. Виды генетической патологии, классификация и характеристика мутаций. Хромосомная патология человека. Генные болезни разных типов наследования.

Модификационная изменчивость. Экспрессивность и пенетрантность проявления признаков. Изменчивость количественных признаков.

Рекомендуемые сообщения:

  1. Болезни с наследственной предрасположенностью.

  2. Митохондриальные генные болезни.

  3. Мутагены и тератогены, врождённые заболевания.

  4. Полимеразная цепная реакция и её практическое применение.

  5. Генетическая природа раковых заболеваний.

Тема 3. Виды наследования. Решение задач

Менделевское моногенное наследование. Аутосомно-доми- нантное наследование признаков, аутосомно-рецессивное наследование признаков, промежуточный характер наследования, наследование, сцепленное с полом, комплементарность, эпистаз и полимерия в наследовании признаков человека. Группы сцепления, генетическая карта человека. Решение задач на разные типы наследования.

Контрольная работа по решению генетических задач.

Тема 4. Генетика пола. Генетика поведения

Хромосомный механизм определения пола. Детерминация и дифференциация пола. Этапы определения пола. Сексуальная ориентация и половая идентификация. Соотношение полов. Проблема генетической обусловленности поведения человека. Понятие и классификация форм поведения. Патологические формы поведения.

Рекомендуемые сообщения:

  1. Поведение животных: предмет и методы этологии.

  2. Преступность.

  3. Алкоголизм и его генетические аспекты.

  4. Наркомания и её генетические аспекты.

  5. Аутизм.

  6. Агрессия и формы её проявления.

Тема 5. Основы психогенетики

Предмет и история психогенетики, евгеника, её плюсы и минусы. Методы психогенетики. Генетические основы индивидуальных различий. Исследования интеллекта, одарённости, темперамента, сенсорных и двигательных способностей. Хромосомные аберрации и психические расстройства, их происхождение и адаптивное значение.

Рекомендуемые сообщения:

  1. Определение интеллекта, разные подходы к пониманию когнитивных способностей.

  2. Возрастные изменения интеллекта.

  3. Работы Ф. Гальтона по исследованию индивидуальных различий психических особенностей человека.

  4. Психологическая структура темперамента.

  5. Функциональная асимметрия мозга и её генетические аспекты.

  6. Развитие функциональной асимметрии в онтогенезе.

  7. Расстройства самоконтроля: игромания, анорексия, булимия.

Методические материалы для учителя

Тема 1. Предмет и задачи, методы генетики человека

(3 часа)

Урок 1 – 2. Человек как объект генетики

Цель: Показать место генетики человека в системе биологических и медицинских наук, раскрыть цели и задачи данного курса

Методы: Беседа с элементами лекции

Содержательная часть урока:

Хотя возраст генетики как науки немногим более ста лет, история её зарождения уходит в глубь веков. Эта история знает моменты полные драматизма. И в настоящее время генетика порождает бурные дискуссии вокруг проблем наследственной обусловленности поведения, клонирования человека, генетической инженерии. Столь значительная роль генетики в жизни общества обусловлена тем. Что она является фундаментом для понимания таких явлений как жизнь, развитие, эволюция, а так же природы самого человека.

Историю развития генетики можно условно разделить на четыре периода:

  1. 1865 – 1900 гг. – зарождение генетики;

  2. 1900 – 1926 гг.– становление генетики как самостоятельной дисциплины;

  3. 1926 – 1960 гг. – накопление эмпирического материала;

  4. 1960 и далее – современный этап.

Рассмотрим некоторые вехи истории генетики:

1866 – опубликование работы Г. Менделя о дискретном характере наследственности и закономерностях передачи наследственных задатков.

1876 – Ф. Гальтон разработал генеалогический и близнецовый методы исследования человека, предложил специальное название для науки об улучшении породы человека – «евгеника».

1900 – переоткрытие законов Менделя, независимо тремя учёными: Гуго де Фриз (Голландия), К. Корренс (Германия), Э. Чермак (Австрия).

1901 – 1903 гг. – Г. де Фриз создал мутационную теорию, постулаты которой справедливы и сегодня. Мутации возникают внезапно, устойчивы, могут быть прямыми и обратными, возникают повторно, бывают полезными и вредными.

1903 – Вильям Саттон и Т. Бовери выдвигают хромосомную гипотезу, связывая Менделевские факторы наследственности с хромосомами.

1907 – У. Бетсон описывает варианты взаимодействия наследственных факторов и вводит понятия комплементарности, эпистаза, неполного доминирования, чуть ранее были введены термины: гомозигота и гетерозигота.

1908 – математик Дж. Харди(США) и В. Вайнберг(Австрия) предлагают формулу распределения генов в популяции, известную в последствии как ключевой закон генетики популяций. Они показали, почему от поколения к поколению частота встречаемости доминантных и рецессивных генов в свободно скрещивающихся популяциях не меняется.

1909 – В. Иогансен формулирует ряд принципиальных положений генетики и вводит основные понятия генетической терминологии: ген, генотип, фенотип, аллель.

1910 – 1912гг. Томас Морган разрабатывает теорию хромосомной локализации генов и устанавливает законы сцепленного наследования, которые вместе с законами Г. Менделя составляют фундамент классической генетики.

1920 – Н. И. Вавилов формулирует закон гомологических рядов наследственной изменчивости.

1924 – Бернштейн установил, что группы крови А, В, О контролируются тремя аллелями одного гена.

1925 – выходит в свет книга «Наследственные болезни нервной системы» известного клинициста-генетика С. Н. Давиденкова.

1926 – Н. В. Тимофеев-Ресовский разрабатывает проблему влияния генотипа на проявления признака и формулирует понятия; пенетрантность и экспрессивность.

С середины 20 гг. в нашей стране начался кризис генетики, которая была объявлена лженаукой, научные исследования практически по всем направлениям генетики были прекращены.

1927 – Г. Меллер впервые получает мутации искуственным путём.

1930 – 1931 гг. – С. Райт, Р. Фишер, Дж. Холдейн разрабатывают теоретические направления популяционной генетики и выдвигают положение о дрейфе генов.

1944 – О. Эвери, К. Мак-Леод, М. Мак-Карти доказали генетическую роль ДНК в экспериментах по трансформации микроорганизмов. Это открытие символизирует начало новой науки – молекулярной генетики.

1947 – Дж. Ледерберг и др. описали генетическую рекомбинацию у бактерий и вирусов, Б. Мак-Клинток впервые описала мигрирующие генетические элементы.

1951 – Э. Чаргафф показал соответствие нуклеотидов в молекуле ДНК (правило Чаргаффа) и её видовую специфичность.

1952 – А. Херши и М. Чейз показали определяющую роль ДНК в вирусной инфекции, что явилось окончательным подтверждением её генетического значения.

1953 – Джеймс Уотсон, Френсис Крик и Морис Уилкинс предложили структурную модель ДНК. Эта дата считается началом эры современной биологии.

1956 – А.Корнберг осуществил процесс репликации ДНК в лабораторных условиях.

1958 – Ф. Крик сформулировал центральную догму молекулярной биологии, по которой передача наследственной информации идёт в направлении от ДНК к РНК, а от РНК – к белкам. Основное положение этой схемы – невозможность кодирования от белков к нуклеиновым кислотам (хотя и допускается путь от РНК к ДНК).

1960 – раскрыт механизм транскрипции генетической информации.

1961 – Ж.Моно и Ф.Жакоб формулируют теорию оперона – теорию генетической регуляции синтеза белка у бактерий.

1961 – 1965 – различные исследовательские группы (Г. Корана, М. Ниренберг, Р. Холли, С. Очоа, Дж .Маттей и др.) провели исследования по расшифровке генетического кода, в результате чего был составлен кодовый словарь в современном виде.

1960 – 1966 гг. – Мак-Кьюсиком выполнены обширные исследования в области изучения полиморфизма наследственных болезней человека, был составлен подробный каталог генов.

1960 – 1970 гг. – разработаны методы культивирования лимфоцитов периферической крови с целью получения метафазных хромосом человека, методы дифференциального окрашивания хромосом, позволившие идентифицировать все хромосомы человека. Описаны хромосомные мутации, являющиеся причинами наследственных заболеваний и показана роль мутаций при развитии злокачественных перерождений клеток.

1969 – Г. Корана впервые синтезировал ген в лабораторных условиях.

1972 – Формируется новое направление в молекулярной биологии – генетическая инженерия. На базе исследований этого направления сконструированы искусственные гены инсулина, саматотропина, интерферона.

1974 – Р. Корнберг, А. Олинс, Д. Олинс формулируют теорию нуклеосомной организации хроматина.

1975 – по инициативе группы учёных во главе с П. Бергом в США проходит Международная конференция по этическим проблемам генной инженерии, на которой провозглашается временный мораторий на ряд исследований, который не остановил работ по генной инженерии, и в последующие годы происходит активное развитие этой области, рождается новое направление – биотехнология.

1977 – У. Гилберт и Ф. Сенджер разрабатывают методы определения последовательности нуклеотидов в нуклеиновых кислотах, Р. Робертс и Ф. Шарп показывают мозаичную (интрон-экзонную) структуру гена эукариот.

1981 – получены первые трангенные животные (мыши).

1988 – по инициативе генетиков США создаётся международная организация «Геном человека».

1990 – впервые произведено введение нового гена в организм человека.

1997 – первый успешный опыт по клонированию млекопитающих (овца Долли).

2003 – работа по расшифровке генома человека завершена.

Современная генетика представляет собой обширное древо производных дисциплин. Ее специализированные разделы стали рассматриваться как самостоятельные генетические науки: генетика человека, цитогенетика, молекулярная генетика, популяционная генетика, иммуногенетика, экологическая генетика, психогенетика, генетика развития и т.д. Тенденция к дифференциации наук проявилась и в направлении генетических исследований человека – сформировались такие разделы, как клиническая генетика, биохимическая генетика человека, цитогенетика человека, нейрогенетика и др.

Вместе с тем, проблема узкой специализации в генетике не проявляется столь остро, как в других науках. Все специализированные генетические дисциплины связаны фундаментальной информацией, систематизированной в рамках общей генетики. Более того, во многом именно генетика в настоящее время определяет единство современной биологии как науки, поэтому 16-й Всемирный генетический конгресс проходил под девизом: «Генетика и единство биологии». Без преувеличения можно сказать, что генетика в той или иной мере определяет развитие всех разделов биологии, является ее методологической базой.

Наиболее актуальными направлениями в генетике человека являются медицинская генетика, генетика индивидуальных различий и генетика поведения.

Медицинская генетика изучает генетические основы патологии человека, в настоящее время описано более 5000 аномалий развития и наследственных заболеваний. Около 5% детей рождаются с тем или иным генетическим дефектом. В задачи медицинской генетики входит изучение характера наследования и проявления патологических признаков, распространения генов, обуславливающих эти признаки в популяциях, разработка принципов классификации, диагностики и профилактики наследственных болезней.

Психогенетика изучает взаимодействие факторов наследственности и среды в формировании индивидуальных различий по психологическим и психофизиологическим признакам, таким, как интеллект, одаренность, поведение. Результаты исследований очень важны не только в теоретическом, но и в практическом аспекте, так как среда обитания человека меняется очень быстро, адекватная реакция на окружающую обстановку во многом определяет жизненный успех человека. От уровня интеллекта, врожденных задатков, индивидуальных психофизиологических особенностей зависит способность к обучению, овладению профессией, благополучие в жизни. С другой стороны, поведенческая реакция на новую культурную среду у некоторых людей оказывается патологической: игральная, компьютерная «наркомания», немотивированная агрессия, аутизм, другие формы девиантного поведения, поэтому важно исследовать особенности поведения в новых ситуациях людей с разными генотипами, разрабатывать методы профилактики пограничных и болезненных состояний.

Человек – довольно трудный объект для генетических исследований. Как высокоорганизованный вид, он имеет исключительно сложную генетическую организацию. ДНК гаплоидного набора человека содержит около 3.000.000.000 пар нуклеотидов, что составляет, по разным оценкам, от 30 000 до 100 000 структурных (функционирующих) генов. Только рекомбинационный процесс, обмен между хромосомами, приводит к новым сочетаниям локусов и групп сцепления, влияя на разнообразие признаков фенотипа, поэтому генотипическая изменчивость современного человечества чрезвычайно велика. Кроме того, частота мутаций у человека оценивается как 0,00001 на локус (ген) в поколении, в среднем, одна из 20 гамет несет новую мутацию. По результатам изучения различных белков, ферментов и антигенов крови и других тканей, 25-30% локусов человека полиморфно, то есть, описано несколько их аллелей.

Достоинства человека как генетического объекта в следующем:

– в почти полном отсутствии естественного отбора, что должно привести к огромному накоплению менделирующих признаков;

– в возможности относительно точно изучать генетику психических особенностей, главным образом психических аномалий;

– в гораздо большей изученности физиологии и морфологии; поскольку даже идеальное фенотипическое сходство поведенческих признаков не гарантирует их генетической идентичности. Более того, физиологические и морфологические различия могут быть доказаны исследованием различий поведения, и, таким образом, дифференциация признаков в значительной мере облегчается. Хорошее знание физиологии объекта подсказывает и направление поисков механизмов развития признака, его появления, т.е. решается проблема реализации признака.

Но основную трудность представляют: недопустимость целевого экспериментирования (в том числе направленного скрещивания) над человеком; отсутствие точной регистрации проявления наследственных признаков в семьях и отсутствие гомозиготных линий; малое число потомков в каждой семье и позднее наступление половой зрелости.

Рост числа наследственных заболеваний, загрязнение окружающей среды мутагенами, проблема онкологических заболеваний, анализ данных этологии (науки о поведении) человека – эти и многие другие факторы способствовали превращению генетики человека в науку огромного социального значения. Цитогенетические исследования, развитие молекулярно-генетических методов позволило вплотную подойти к активному вмешательству в геном человека. Однако генетические знания, к сожалению, недостаточно вошли в сознание широких масс населения. В нашей стране существует сеть медико-генетических консультаций, которые помогут оценить степень риска появления наследственной патологии у ожидаемого потомства конкретной супружеской пары, однако пока врачам-генетикам приходится лишь объяснять наличие отклонений у родившихся детей.

Генетика всё больше входит в повседневную жизнь людей, во многом определяя будущее человечества. Можно не сомневаться, что эксперименты по «конструированию человека» будут продолжены. Всё чаще в печати обсуждаются вопросы клонирования человека, воздействие на его генотип, опасность генно-модифици- рованных продуктов. Как эти проблемы скажутся на судьбе человечества, сказать невозможно.

Вопросы для обсуждения:

  1. Что изучает генетика человека?

  2. Почему человек является трудным объектом для изучения его генетики?

  3. Какова практическая направленность генетики человека?

Урок 3 – 4. Методы генетики человека

Цель: Охарактеризовать способы получения и обработки информации о развитии наследственных признаков человека

Методы: Лекция

Содержательная часть урока:

Применение самых распространенных методов общей генетики – гибридологического и экспериментально-мутационного – невозможно при изучении закономерностей наследственности и изменчивости человека, поэтому наиболее информативными и значимыми являются: генеалогический, близнецовый, цитогенетический, популяционный, онтогенетический и метод моделирования.

1. Генеалогический метод является наиболее исторически ранним. Генеалогия – это наука о родословных человека. Чем больше семья, тем более информативной является родословная. В 1826 г. была описана семья персидского шаха, имевшего 66 сыновей, 53 замужних дочери, 271 внука и внучку. К 80-летию этого шаха в его семье было уже 860 детей, внуков, правнуков и праправнуков. Особенно важно наличие большого числа детей в поколении для установления типа наследования признака. Люди изображали внутрисемейные отношения в графическом виде, начиная с XV века.

Важнейшие представления о химической природе генов и матричном принципе их воспроизводства были впервые четко сформулированы в 1927. Н.К. Кольцовым (1872–1940). Его ученик Н.В. Тимофеев-Ресовский (1900–1981) воспринял эти идеи и развил их как принцип конвариантной редупликации генетического материала. Немецкий физик Макс Дельбрюк (1906–1981; Нобелевская премия 1969г.), работавший в середине 1930-х гг. в Химическом институте кайзера Вильгельма в Берлине, под влиянием Тимофеева-Ресовского заинтересовался биологией настолько, что бросил физику и стал биологом.

В течение долгого времени, в полном соответствии с определением жизни, данным Энгельсом, биологи считали, что наследственным веществом являются какие-то особые белки. О том, что нуклеиновые кислоты могут иметь к генам какое-то отношение, никто и не думал – слишком уж они казались простыми. Так продолжалось до 1944 г., когда было сделано открытие, коренным образом изменившее все дальнейшее развитие биологии. В этом году была опубликована статья Освальда Эйвери, Колина Мак-Леода и Маклина Мак-Карти о том, что у пневмококков наследуемые свойства передаются от одних бактерий другим с помощью чистой ДНК, т.е. именно ДНК является веществом наследственности. Затем Мак-Карти и Эйвери показали, что обработка ДНК расщепляющим ее ферментом (ДНКазой) приводит к потере ею свойств гена. До сих пор непонятно, почему это открытие осталось не отмеченным Нобелевской премией.

В Советском Союзе генетики как науки не существовало в природе. Ситуация начала меняться лишь в конце 1960-х годов, когда американские ученые опубликовали сенсационные результаты исследования генотипа типичного американца. Результат генетического скриннинга населения США действительно выходил за рамки академической науки и вызвал у американских граждан настоящий шок. Оказалось, что за неполные 200 лет американской государственности ее эталонный гражданин -- белый, англосаксонского происхождения и протестантского вероисповедания -- стал генетически на 30% негром. Результаты американцев заинтересовали советских чиновников, поэтому в СССР были созданы первые лаборатории по популяционной генетике человека. Занимались они исключительно изучением наследственности малых народов, а большинство полученных результатов сразу получали гриф «для служебного пользования».

Сбор материала для генетического анализа проводят одним из способов – по пробанду и сплошным методом. Выбор метода определяется характером изучаемого признака и его распространённостью в популяции. Если ставится цель изучить редко встречающийся признак, например, психическое заболевание, то регистрацию семей осуществляют по прабанду. Потенциальные пробанды – обладатели признака, могут состоять на учёте в специализированных лечебных или социальных учреждениях. Если планируется изучить наследственную природу признака, который имеется у каждого человека, например, уровень интеллекта, сбор материала проводят сплошным методом. Намечают группу людей, которая может быть изучена (генеральная совокупность) и из неё формируют выборку. При любом сборе данных объекты исследования должны включаться в выборку случайно, недопустимо отбирать «наиболее интересные» или «типичные» случаи.

Сущность метода – в анализе наследования и проявления изучаемого признака в ряду поколений, при этом информативность метода возрастает по мере исследования большего числа поколений. Для этого составляют родословные, которые представляют собой последовательную графически изложенную совокупность сведений о предках того или иного человека, характеризующих его происхождение. Анализ полученной при составлении родословной информации позволяет определить тип наследования интересующего признака или болезни. Метод позволяет выяснить: сколько генов вызывают проявление признака или болезни (моногенное или полигенное наследование), а также в каких хромосомах локализованы эти гены – в половых или аутосомах. Он является наиболее доступным, но разрешающая способность метода относительно невелика, особенно в условиях недостатка данных. При составлении родословных могут возникать определённые трудности. Обычно люди могут проследить свою родословную не более, чем на 2 – 3 поколения назад и не помнят всех родственников. Иногда они умышленно скрывают факты, которые для них неприятны или о которых они не хотят упоминать. В ряде случаев путаница в родословных может наблюдаться из-за внебрачных детей, повторных браков, современных репродуктивных технологий (искуственное оплодотворение, суррогатное материнство). Родители и дети представляют собой ядерную семью. Родственниками первой степени родства являются родители и дети, родные братья и сёстры(сибсы). У них половина общих генов. Родственники второй степени родства (бабушки, дедушки, внуки, внучки, дяди, тёти, племянники и племянницы) имеют 25% общих генов. Двоюродные сибсы – это родственники третьей степени родства, у них 12,5% общих генов. Дети, у которых один общий родитель, называются полусибсами. Они родственники второй степени родства. Примером применения такого метода является исследование некоторых признаков в царских династиях на протяжении многих поколений (гемофилия, габсбургский нос).

2. Близнецовый метод применяется для выяснения степени наследственной обусловленности исследуемых признаков. Метод основан на сравнении по ряду признаков однояйцевых (монозиготных, МЗ) и разнояйцевых (дизиготных, ДЗ) близнецов.Этот метод позволяет определить роль генетического вклада в наследование сложных признаков, а также оценивать действие влияния таких факторов, как воспитание, обучение и т.

Исследователь работает с парами близнецов, изучая в них наличие и степень выраженности интересующего его признака. При использовании этого метода проводится сопоставление:

– монозиготных близнецов с дизиготным;

– партнёров в монозиготных парах между собой;

– данных анализа близнецовой выборки с общей популяцией.

Монозиготными близнецами называются близнецы, образовавшиеся из одной зиготы, разделившейся на стадии дробления на две (или более) части. Следовательно, с генетической точки зрения, они идентичны, т. е. обладают одинаковыми генотипами. Естественно, что они всегда одного пола.

Полученные данные анализируются по показателям конкордантности (сходства) и дискордантности (различия) признака, выражаемым в процентах.

Дизиготные близнецы возникают путём оплодотворения двух разных яйцеклеток разными сперматозоидами, которые развиваются в матке одновременно. С генетической точки зрения они схожи между собой не более, чем обычные братья и сёстры, так как имеют в среднем 50% идентичных генов. Общая частота рождения близнецов составляет 1%, приблизительно 1/3 их приходится на монозиготных близнецов.

Близнецовый метод включает в себя:

а) подбор близнецовых пар;

б) определение зиготности близнецов, основанное на анализе наиболее изученных моногенных признаков (группы крови, лейкоцитарные антигены, чувствительность к горькому вкусу фенилтиомочевины и т. д.). Если у обоих близнецов по этим признакам нет различий, их считают монозиготными. Наиболее достоверный критерий монозиготности – свободная приживляемость трансплантантов;

в) сопоставление групп моно- и дизиготных близнецов по изучаемому признаку. При этом определяется коэффициэнт парной конкордантности (К), указывающий на долю близнецовых пар, в которых исследуемый признак проявился у обоих партнёров (конкордантность – степень сходства, дискордантность – степень несходства).

Коэффициэнт «К» можно выражать в процентах и в долях единицы. Если у монозиготных близнецов «К» высок, а у дизиготных – низок, считают, что доминирующая роль в определении признака принадлежит наследственным факторам. При близких значениях «К» у моно- и дизиготных близнецов считают, что признак развивается в основном под действием внешней среды. Если значение «К» у монозиготных близнецов невысоко, но существенно выше, чем у дизиготных близнецов, считают, что в формировании признака сыграли роль как факторы внешней среды, так и факторы генетической природы, т. е. к развитию признака имеется определённая наследственная предрасположенность.Базовым методом считается сравнение выраженности данного признака в парах МЗ и ДЗ, например, сходство уровня интеллекта у МЗ существенно выше – 97%, чем у ДЗ – 50%. МЗ близнецы – единственные люди на Земле, имеющие одинаковые наборы генов. Дизиготные близнецы с точки зрения генетической – родные братья и сестры, имеющие по 50% общих генов.