
- •Неметаллы
- •Пьезооптическое сырье
- •Практическая значимость магнезита и брусита
- •Цеолиты
- •Природный сульфат бария –
- •Флюорит или плавиковый шпат
- •Нитриевые, калийные калийно-магниевые соли.
- •Фосфориты
- •Апатиты.
- •Группировка неметаллических полезных ископаемых по производственным признакам
- •Химическое и агрономическое сырье
- •Индустриальное сырье
- •Камнесамоцветное сырье
- •Строительно конструкционные материалы и сырье для их производства.
- •Месторождения неметаллов
- •4. Дальнегорское месторождение борного сырья.
- •5. Илецкое месторождение каменной соли.
- •6. Верхнекамское месторождение калийно-магниевых солей.
- •7. Месторождения амозита и крокидолита юар
- •8. Мамско-Чуйские месторождения мусковита
- •9. Вознесенское месторждение
- •10. Завальесвское месторождение графита
- •10.Завальевское месторождение графита.
- •11. Чордское месторождение барита.
- •12. Айдагское месторождение цеолитов.
- •13. Саткинские месторождение магнезита.
- •14. Киргитейское месторождение талька.
- •15. Кыштымские месторождения гранулированного кварца.
- •16. Молодежное месторождение асбеста.
- •17. Месторождения оптического флюорита Центрального Казахстана.
- •18. Нижнетунгусские месторождения исландского шпата.
- •19. Месторождения алмазов Сибирской платформы.
- •20. Месторождения драгоценных камней Бирмы и Шри-Ланки.
Флюорит или плавиковый шпат
вляется основным природным минералом фтора. Его теоретическому составу CaF2 отвечает 51,1 кальция и 48,9% фтора. В малых количествах флюорит содержит примеси редких земель, урана, галлия и др., а также органические вещества. Свое второе название <плавиковый шпат> или <плавик> он получил благодаря способности понижать температуру плавления железных руд.
Минерал образует хорошо оформленные кристаллы кубической сингонии, он чаще встречается в виде кристаллических агрегатов, а также сплошных тонкозернистых и землистых масс. Его окраска варьирует от бесцветной и белой до желтой, зеленой, фиолетовой, голубой и синей. Цвет может меняться при нагревании и воздействии катодных, рентгеновских, ультрафиолетовых лучей и радиоизлучения. Блеск стеклянный, твердость 4, плотность 3-3,25 г/cм3, температура плавления 1360њС
Химический флюорит используется для получения плавиковой кислоты (HF) путем его реакции с серной кислотой: CaF2 + H2SO4 → 2HF + CaSO4
Плавиковая кислота является исходным сырьем в химической промышленности для получения самых различных органических и неорганических фторсодержащих химических соединений (фторуглеродов, фторполимеров и др.), элементарного фтора, синтетического криолита (Na3AlF6), которые, в свою очередь, широко используются для изготовления высокооктанового топлива, всевозможных растворителей, аэрозольных препаратов, хладореагентов, полимерных материалов, в ядерной технике. Керамический флюорит используется при варке белых или окрашенных кварцевых стекол (ускоряется процесс варки), плавке цинка, в производстве стеклянного волокна, для получения эмалей как покрытий металлов, армирования стержней для электродуговой сварки Металлургический флюорит необходим как флюсовая добавка при производстве чугуна и стали; его присутствие в шихте не только понижает температуру плавления, но и разжижает шлаки, облегчая их отделение от расплавленного металла. Из оптического флюорита изготовляют всевозможные линзы, призмы, окна в микроскопах, спектрографах и др. оптико-спектральных приборах; он используется для изготовления светоделительных и светопреломляющих оптических элементов, в акустических устройствах для переработки радиосигналов и т.п. Бездефектные и бесцветные кристаллы оптического флюорита в поперечнике должны превышать 10 мм, а получаемые из них моноблоки должны иметь размеры 6x6x5 мм, либо 10x10x3 мм.
Среди зарубежных и российских геологов в качестве важнейших геолого-промышленных типов флюоритовых месторождений принято выделять:
1) неправильные, сложной формы тела дифференцированных камерных пегматитов в апикальных частях гранитных плутонов как господствующий источник кристаллов оптического флюорита;
2) гидротермальные жилы, секущие зоны дробления и трубообразные тела в терригенно-осадочных, изверженных и редко в карбонатных породах;
3) стратиформные гидротермальные залежи преимущественно в карбонатных породах.
Пегматитовые месторождения являются комплексными: помимо крупных кристаллов флюорита они содержат горный хрусталь, кварц для плавки, полевой шпат и др.; их характеристика приведена при описании месторождений пьезооптического сырья
Гидротермальные жильные месторождения являются одним из главных промышленных источников плавикового шпата. Их отличает высокое (до 90%) содержание CaF2 в рудах, простой минеральный состав (флюорит и кварц, реже карбонаты, барит и сульфиды). Типичными представителями этого типа в нашей стране являются многочисленные месторождения Забайкалья (Солонечное, Усуглинское, Абагатуйское, Березовское, Наранское, Калангуйское, Таменгское и др.), а также селлаит-флюоритовое Суранское в нижнерифейских толщах Башкирского мегантиклинория. За рубежом к нему принадлежат месторождения провинций Хубэй, Чжэцзян, Шаньдун и Внутренней Монголии в Китае, большинство месторождений Восточной Монголии
Стратиформные гидротермальные залежи обычно имеют пластовую, линзовидную, пластообразную, седловидную и другие формы, залегая согласно с вмещающими стратифицированными толщами пород. В настоящее время эти месторождения являются ведущими как по запасам, так и по добыче плавикошпатового сырья, несмотря на заметно меньшие (15-70%) содержания CaF2 в своих рудах. В минеральном составе возрастает роль барита. Для них свойственно наличие перекрывающих залежи литологических экранов в сочетании с благоприятными складчатыми и разрывными структурами. К рассматриваемому типу относятся Даринское и Степное в Забайкалье,
Графит
Помимо широко распространенных в природе соединений с кислородом (карбонатов) и с водородом (углеводородов), углерод присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз, идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.
Графит кристаллизуется в гексагональной сингонии; его слоистая кристаллическая структура характеризуется весьма крепкой ковалентной гомеополярной связью атомов углерода в пределах слоя.
Особенность строения кристаллической решетки графита, включая наличие в ней свободных электронов, и обуславливает его физические свойства: весьма совершенную спайность в базальной плоскости, низкую твердость (около 1) вдоль нее, но достаточно высокую в перпендикулярном направлении (около 5,5), низкий коэффициент трения, высокую электропроводность, близкую к металлам, металлический блеск, непрозрачность и др. Важное промышленное значение имеют также высокая теплопроводность (выше, чем у меди и алюминия), огнеупорность (температура плавления 3800-3900њС), химическая инертность (растворяется лишь в расплавленных силикатах или металлах, образуя карбиды), гидрофобность
В природе графит встречается в виде рассеянных чешуек, либо их листоватых агрегатов (<кристаллический чешуйчатый графит, flake graphite>), плотных зернистых агрегатов (<кристаллический кусковый графит, vein type, lump graphite>), либо плотных скрытокристаллических масс (<аморфный графит, amorphous graphite>). Кроме того, в промышленности все шире используется искусственный (коксовый, доменный, ретортный) графит (), специально получаемый из антрацита, нефтяного кокса, а также из отходов доменного производства. Промышленные руды чешуйчатого графита содержат от 2 до 15% (редко более) этого минерала. Они легко обогащаются флотацией с получением концентрата, содержащего 60% и более графита. Еще более обогатимы выветрелые чешуйчатые руды, в которых срастания графита с другими минералами отсутствуют. В плотнокристаллических кусковых pудах массовая доля графита составляет 35-40% и более; без обогащения используется руда, в которой эта величина поднимается до 60-80%
Основная масса графита потребляется в качестве огнеупоров (чешуйчатая и плотнокристаллическая разновидности) в основном в черной и цветной металлургии, производстве высокоуглеродистой стали и в литейном деле
Максимальное мировое производство графита (около 950 тыс т) зафиксировано в 1989-1990 г. Наиболее крупными продуцентами являются КНР (около 40-45% всего производимого в мире графитового концентрата), далее следуют Республика Корея, Индия, КНДР
В целом можно говорить о трех главнейших мировых геолого-промышленных типах месторождений графита: 1. Неправильные тела, линзы, штоки и жилы богатых руд высококачественнного плотнокристаллического графита в магматических (чаще сиенитовых), пегматитовых, скарновых и метаморфических кристаллических породах; в этот тип попадают магматические, пегматитовые и пневматолито-гидротермальные, скарновые месторождения, причем их генезис как правило является предметом дискуссий. Сюда относятся месторождения нашей страны (Ботогольское), Шри-Ланки и Индии (в штатах Раджастан, Орисса, Мадрас), Канады (Бакингем и Грейнвилл в провинции Квебек, Блэк-Дональд в провинции Онтарио), США (Стербридж в штате Массачусетс, Диллон в штате Монтана, Тиконгероги в штате Нью-Йорк), Бразилии, Японии (Сеннотани в префектуре Тояма), возможно Норвегии (Скаланд на о-ве Сенья) и др. 2. Пластовые залежи и линзы метаморфических вкрапленных руд чешуйчатого графита в глубокометаморфизованных породах преимущественно докембрийского возраста, включая их выветрелые разновидности; в составе этого типа - месторождения Украинского щита (Завальевское и др.) на Украине, Урала (Тайгинское, Мурзинское), Карелии (Ихальское) и др. регионов в России, Южной Чехии и Северной Моравии в Чехии, штатов Нью-Йорк, Пенсильвании, Алабамы и Техаса в США, острова Мадагаскар (Малагасийская республика) и др. 3. Пластовые залежи и линзы богатых руд скрытокристаллического (аморфного) графита в стратифицированных осадочных толщах различного возраста, образованные за счет контактового метаморфизма угольных пластов и битумов. Примерами этого типа являются месторождения Тунгусской провинции (Курейское, Ногинское и др.) в России, штата Сонора в Мексике, Штирии и Нижней Австрии в Австрии, Республики Корея и КНДР.
Слюда
Слюды представляют группу сложных алюмосиликатов щелочных и щелочно-земельных металлов, обладающих рядом специфических особенностей. Все они кристаллизуются в моноклинной сингонии, обладают совершенной спайностью по пинакоиду [001], что позволяет расщеплять их на тончайшие гибкие эластичные пластинки; их окраска варьирует от бесцветной до зеленовато-коричневой, почти черной, плотность 2,7-3,1 г/см3; твердость 2-3.
Мусковит KAl2[AlSi3O10](OH,F)2 в качестве примесей содержит Fe 1-4%, Mg 0,2-1,1%, Na 0,1-0,7%, а также незначительные количества Mn, Rb, Cs, Li, Ba, Ca, W, Ti, V; его цвет в тонких пластинках - бесцветный и прозрачный, в толстых - зеленый, дымчатый, красноватый (так называемая <рубиновая> слюда). Мелкочешуйчатая разновидность мусковита - жильбертит (диаметр пластинок первые мм), а тонкочешуйчатая - серицит (диаметр пластинок - десятые и сотые доли мм). Натровым аналогом мусковита является парагонит.
Флогопит K(Mg,Fe)3[AlSi3O10](OH,F)2 окрашен в зеленовато-коричнево-янтарные (до черного) цвета, очень редко бесцветен. В качестве примесей в нем отмечаются Na, Mn, Rb, Cs, Ba, Li.
Важнейшими свойствами мусковита и флогопита, определяющими их промышленное использование, помимо способности к расщеплению на тонкие, упругие и гибкие пластинки являются: 1) высокая механическая прочность (прочность на разрыв у мусковита 330-480, у флогопита 220-480 МПа; сопротивление сжатию соответственно 420-530 и 200-260 МПа); 2) относительно высокая химическая стойкость, особенно у мусковита (под действием щелочей, соляной и серной кислот практически не разлагается); 3) термическая стойкость (жароупорность, то есть способность сохранять при нагревании физические свойства, у мусковита достигает 500-600њС, а у флогопита - 1000њС); 4) высокая электрическая прочность, определяемая напряжением, при котором происходит пробой диэлектрика (при толщине пластинок в 0,5 мм она составляет у мусковита 4,9 кэВ, у флогопита - 4,6-6,1 кэВ
Помимо собственно слюд (мусковита и флогопита) большое промышленное значение имеет гидрослюда - вермикулит (Mg,Fe+2,Fe+3)3.[(Si,Al)4O10].(OH)3.4H2O, характеризующийся переменными количествами Fe, Mg и Al; в нем может быть существенная примесь Ca, немного Mn и Ti, а также следы Na, K, F, Ni, Cr и Ba. Цвет бронзовый желтовато-коричневый до темного, блеск яркий до перламутрового. Твердость минерала 2,1-2,8, плотность 2,5 г/см3.
Главным промышленным свойством вермикулита является его способность интенсивно вспучиваться при нагревании свыше 200њС с увеличением объема в 8-12 раз (предельно в 30 раз); этот процесс, сопровождаемый дегидратацией минерала, заканчивается при температурах 800-1000њС. Вспученный вермикулит является прекрасным тепло- и звукоизолятором, неплохим огнеупором. Максимум мирового производства слюдяной продукции (363 тыс т) пришелся на 1990 год. Основная причина последовавшего затем спада - развал СССР, являвшегося мировым лидером по производству слюды. Около 90% мирового производства слюды приходится на мусковит и только около 10% - на флогопит.
Крупнокристаллический листовый мусковит формируется исключительно в составе тел гранитных пегматитов, развитых в полях метаморфических докембрийских толщ амфиболитовой фации регионального метаморфизма. Среди этих пегматитов, как плагиоклазовых, так и плагиоклаз-микроклиновых, выделяются тела в толщах биотитовых, гранат-биотитовых, амфибол-биотитовых парагнейсов и сланцев часто без видимой связи с гранитными интрузиями и тела альбитизированных редкометалльных пегматитов в контактовых ореолах гранитных интрузий.
В настоящее время мировыми геолого-промышленными типами месторождений слюд являются следующие.
1. Штокообразные, дайковые, линзовидные и пластовые тела аляскитовых гранитов с рассеянной мелкочешуйчатой мусковитовой минерализацией; значительные размеры этих тел (первые километры) и их близповерхностное залегание позволяют вести разработку открытым способом (месторождение Спрус Пайн в США и др.).
2. Согласные пластовые и четковидные залежи, секущие трубообразные, жильные и неправильной формы тела мусковитоносных плагиоклазовых и плагиоклаз-микроклиновых гранитных пегматитов, обычно зональные, в древних высокометаморфизованных толщах, имеющие размеры по удлинению до сотен-первых тысяч метров, по мощности в метры-десятки метров и несущие неравномерную минерализацию крупнокристаллического мусковита; они являются также промышленным источником полевого шпата и кварца, иногда редких металлов, некоторых драгоценных и поделочных камней (месторождения Мамско-Чуйской и Карело-Кольской провинций в России, Бихар, Раджастан и Андхра-Прадеш в Индии, месторождения Бразилии, Зимбабве и других стран).
3. Линзы, трубы, гнезда, жилы, неправильной формы метасоматические залежи крупнокристаллического флогопита в ассоциации с оливином, диопсидом, магнетитом, кальцитом и другими минералами в карбонатитовых комплексах ультраосновных-щелочных пород; размер залежей десятки-сотни метров; наряду с флогопитом они могут быть источником апатита, магнетита, бадделеита, а также вермикулита и других видов минерального сырья (месторождения Ковдор, Гулинское, Маган
4. Жилы, линзовидные, пластообразные, гнездовые, столбообразные, седловидные и другие залежи крупнокристаллического флогопита в ассоциации с диопсидом, кальцитом, апатитом, шпинелью и другими минералами среди диопсидовых, кварц-диопсидовых, скаполит-диопсидовых пород, пироксен-роговообманковых сланцев, доломитов, кальцифиров в составе древних высокометаморфизованных гранито-гнейсовых комплексов; протяженность залежей десятки-первые сотни метров, мощность метры-десятки метров; в отдельных случаях помимо флогопита промышленный интерес приобретает апатит (месторождения Алданской слюдоносной провинции в России, Памирской - в Таджикистане, ряд месторождений Канады и др.).
5. Пластовые, линзовидные, жило-, гнездо- и штокообразные залежи вермикулита, залегающие в корах выветривания массивов ультраосновных (пироксенитовых) и ультраосновных-щелочных пород, развивающиеся за счет непромышленных скоплений биотита и промышленной флогопитовой минерализации (месторождения Либби в США, Лулекоп в ЮАР
Азбест
Термин <асбест> объединяет различные по своему составу и свойствам минералы: хризотил, крокидолит, амозит, антофиллит, иногда тремолит, актинолит, режикит
Асбест выполняет маломощные жилы и прожилки, причем ориентировка его волокон может быть различной: если волокна располагаются перпендикулярно стенкам жилок (наиболее распространенный случай), то это - поперечно-волокнистый асбест (cross fiber), если вдоль стенок, то это - продольно-волокнистый асбест или так называемые волокна скольжения
Хризотил (<белый асбест>) - волокнистая разновидность водного силиката магния - серпентина, состав которого отвечает формуле Mg6[Si2O5](OH)8 или 3MgO.2SiO2.2H2O. В природном хризотил-асбесте содержатся примеси Fe2O3, FeO, Al2O3, Cr2O3, NiO, МnО, CaO, Na2O и H2O. Он слагает жилки в темно-зеленых серпентинитах, обнаруживая обычно поперечно-волокнистую структуру.
Крокидолит (<голубой асбест>) представляет волокнистую разновидность рибекита. Его химический состав выражается формулой: Na2Fe5[Si4O11]2(OH)2 или Na2O.3FeO.Fe2O3.8SiO2.Н2О. Он встречается в поперечно-волокнистых жилках и имеет серо-голубой цвет, сохраняющийся после расщепления.
Амозит (<коричневый асбест>), являющийся волокнистой разновидностью грюнерита, имеет состав MgFe6[Si4O11]2(ОН)2 или МgО.6FeO.8SiO2.Н2О. Встречается в жилках поперечно-волокнистого строения. Пепельно-серый до коричневого, после извлечения из породы становится белым.
Антофиллит-асбест имеет состав (Mg,Fe)7[Si4O11]2(ОН)2, характеризуясь переменным содержанием железа. Цвет светло-серый до белого и коричневато-серого. Чаще всего встречается в виде продольно-волокнистых выделений, звездчатых или радиально-лучистых агрегатов.
Помимо огнестойкости, устойчивости к воздействию кислот и щелочей и других свойств, промышленная ценность асбеста определяется длиной волокна и его прочностью. Так, по длине волокна хризотил-асбест подразделяется в нашей стране на 8 сортов (от 0 до 7). Для нулевого сорта длина волокна превышает 13 мм, а для седьмого - менее 1 мм.
По прочностным свойствам асбест разделяется на нормальной или высокой прочности (прочность на растяжение около 300 кг/мм2), полуломкий или пониженной прочности и ломкий или слабой прочности (прочность на растяжение 110-220 кг/мм2). Хризотил-асбест пониженной прочности фиксируется в зоне выветривания; для него характерна белесая окраска, низкая распушиваемость, меньшая эластичность и некоторое снижение количества MgO
1. Линзо- и трубообразные залежи и жилы с хризотиловой минерализацией в серпентинизированных альпинотипных и стратиформных ультрамафитах дунит-гарцбургитовой (Россия, Канада, Казахстан, КНР и др.) и габбро-пироксенит-перидотитовой (ЮАР. Зимбабве) формаций (на первые из них приходится 92-93 % мировых запасов асбестов и 90% добычи, на вторые - 2-3 % и 8 % соответственно).
2. Пластовые и жилообразные зоны серпентинизации с хризотиловой минерализацией в апокарбонатных магнезиальных породах - скарноидах (США, Россия, КНР).
3. Пластовые жилы с крокидолитом и амозитом в железо-кремнистых породах типа железистых кварцитов и яшм близ контактов с доломитами (ЮАР и др.), включающие до 1,5 % мировых запасов асбестов и около 1,5 % добычи.
4. Гнездо-, линзо- и штокообразные тела с антофиллит-асбестовой минерализацией в апоультрамафитах амфиболито-гнейсовых комплексов (Мозамбик, Индия, Казахстан, Россия и др.), на которые приходится 1,5% мировых запасов и 1,5% добычи асбестов.