- •Билеты устного экзамена по геометрии.
- •8 Класс. 2013-2014 уч. Г.
- •Задача по теме «Подобие».
- •Определение и свойства равнобедренного треугольника. Доказательство теоремы о свойстве медианы равнобедренного треугольника, проведенной к основанию.
- •Определение вектора, его длины. Равные и противоположные векторы. Сложение и вычитание векторов. Умножение вектора на число.
- •Разность векторов и обозначается так: - .
- •Задача по теме «Подобие треугольников».
- •Определение равных треугольников. Признаки равенства треугольников (доказательство всех признаков).
- •1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.
- •2. Возможны три случая: 1) луч вв1 проходит внутри угла авс; 2) луч вв1 совпадает с одной из сторон угла авс; 3) луч вв1 проходит вне угла авс.
- •Деление отрезка на п равных частей. Доказательство теоремы Фалеса.
- •1. Дополнительное построение: Через точку в2 проведем прямую fe II oa, такую, что
- •2. Полученные четырехугольники fa1a2b2 и еa3a2b2 являются параллелограммами по определению (противоположные стороны попарно параллельны). По свойству параллелограмма:
- •3. Рассмотрим ∆ fb1b2 и ∆в2b3е.
- •2. Разобьем отрезок oa2 на m равных частей длины х. При этом точка a1 будет одной из точек деления.
- •3. Проведем через точки деления прямые, параллельные прямой a1b1. Их получится столько, сколько точек деления на отрезке oa1.
- •5. Тогда
- •Задача по теме «Метод координат»
- •Вывод формулы для вычисления суммы внутренних углов выпуклого многоугольника.
- •Задача «Решение прямоугольного треугольника».
- •Параллельные прямые (определение). Признаки параллельности двух прямых и доказательство этих признаков.
- •Нахождение гипотенузы, катета и острого угла прямоугольного треугольника по данным второму катету и острому углу.
- •Задача «Углы в окружности».
- •Определение вписанного угла. Доказательство теоремы об измерении вписанного угла.
- •1). Одна из сторон вписанного угла проходит через центр окружности.
- •2). Центр окружности лежит внутри вписанного угла.
- •3). Центр окружности лежит вне вписанного угла. Вне угла еас проведем луч ат через центр окружности. Согласно аксиоме измерения углов
- •Вывод формул площади треугольника .
- •1) Пусть авс – остроугольный, тогда bn ac лежит внутри треугольника.
- •2) Пусть авс – тупоугольный с тупым углом с и bn ac лежит внутри треугольника.
- •Задача по теме «Трапеция».
- •Определение внешнего угла треугольника. Доказать теорему о внешнем угле треугольника. Сумма внешних углов п- угольника.
- •Нахождение значений синуса, косинуса, тангенса и котангенса углов в 300, 450, 600.
- •Задача по теме «Пропорциональные отрезки в круге».
- •Геометрическое место точек. Теорема о геометрическом месте точек, равноудаленных от двух данных точек, в геометрической и аналитической формах.
- •1) Окружность – это геометрическое место точек, равноудаленных от данной точки.
- •2) Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.
- •3) Серединный перпендикуляр к отрезку – это геометрическое место точек, равноудаленных от концов отрезка.
- •Площадь прямоугольника, прямоугольного треугольника и площадь квадрата.
- •1) Рассмотрим прямоугольник со сторонами a и b и площадью s.
- •Задача по теме «Элементы треугольника»
- •Определение треугольника. Доказать теорему о сумме углов треугольника. Замечательные точки треугольника: центр тяжести, ортоцентр, центры вписанной, описанной и вневписанной окружностей.
- •Определение тригонометрических функций острого угла прямоугольного треугольника, основные тригонометрические тождества с выводом.
- •3). Доказательство:
- •Задача по теме «Параллелограмм».
- •Определение прямоугольного треугольника. Признаки равенства прямоугольного треугольника (доказательство всех признаков).
- •Окружность (определение). Формула для вычисления длины дуги окружности (без вывода). Вывод формулы длины дуги окружности.
- •Задача по теме « Задача на построение».
- •Определение параллелограмма. Свойства параллелограмма с доказательством (не менее четырех свойств).
- •Построение биссектрисы угла. Доказать свойство биссектрисы треугольника. Теорема об отношении отрезков биссектрисы треугольника, но которые она делится точкой пересечения биссектрис.
- •Задача по теме «Прямоугольник, квадрат».
- •Доказать признаки параллелограмма. Построение параллелограмма по двум сторонам и диагонали.
- •Определение вневписанной окружности. Теорема о центре вневписанной окружности.
- •Задача по теме «Векторы».
- •Определение прямоугольника. Доказать свойства и признаки прямоугольника.
- •Выражение расстояния между двумя точками через координаты этих точек.
- •Задача на тему «Окружность».
- •Определение ромба. Доказать свойства и признаки ромба. Вывод формулы
- •Доказательство.
- •Выражение радиуса окружности, вписанной в прямоугольный треугольник через его стороны (вывод формулы).
- •Задача по теме «Биссектриса внутреннего угла треугольника».
- •1. Строим любой неразвернутый угол с вершиной о.
- •4. Проводим прямую ас.
- •5. Через точку в проводим параллельную ей прямую, которая пересекает вторую сторону угла в точке d.
- •Определение вписанного четырехугольника. Доказательство свойства углов вписанного четырехугольника.
- •1) Точка c находится вне окружности,
- •Задача по теме «Теорема синусов».
- •Определение средней линии треугольника и трапеции. Доказательство теорем о средней линии треугольника и трапеции.
- •Рассмотрим mbn и npc.
- •Построение окружности, вписанной в треугольник и описанной около него.
- •3.Задача по теме «Векторы».
- •Построение касательной к окружности (два случая).
- •Задача по теме « Четырехугольники».
- •Вывод формулы Герона.
- •Свойство чевианы о разбиении площади треугольника на части. Теоремы о «ласточкином хвосте».
- •Задача на тему «Задачи на построение».
- •2.Доказать теорему об отношении отрезков медиан, на которые они делятся центром тяжести.
- •Задача по теме «Векторы».
- •Трапеция (определение). Вывод формулы площади трапеции. Теорема о четырех точках трапеции (доказательство).
- •Уравнение окружности (вывод). Взаимное расположение прямой и окружности.
- •Задача по теме «Решение треугольника».
- •1. Теорема Пифагора (прямая и обратная). Пифагоровы тройки чисел, египетский треугольник.
- •1). Пусть т – прямоугольный треугольник с катетами a и b и гипотенузой с.
- •4). Докажем, что четырехугольник defg является квадратом.
- •5) По принципу равносоставленности
- •4). Докажем равенство сторон ав и а1в1.
- •5). Докажем равенство треугольников авс и а1в1с1.
- •6). Таким образом, треугольник авс – прямоугольный с прямым углом с.
- •2.Доказательство теоремы о градусной мере угла между хордой и касательной, проведенной через ее конец. Построение касательной к окружности, проходящей через данную точку, не лежащую на окружности.
- •Построение касательной к окружности. Касательную из точки а к окружности можно провести следующим образом:
- •Задача по теме «Подобие».
- •1.Теорема синусов. Следствие из теоремы.
- •2. Доказательство теорем об углах, образованных пересекающимися хордами и секущими, проведенными из одной точки к окружности.
- •3. Задача по теме «Метод координат».
- •1. Теорема косинусов. Следствие из теоремы.
- •Угол с-острый;
- •Угол с- тупой;
- •Угол с –прямой.
- •Построение прямой, параллельной данной. Построение касательной, проходящей через данную точку, не лежащую на данной окружности.
- •Решение
- •Точки 1 и 2 пересечения полученной окружности с заданной определяют положение точек касания;
- •Отрезки [1a] и [2a] определяют положение касательных t1 и t2 проведенных из точки а к окружности.
- •3.Задача по теме « Подобие».
- •Теорема об отношении площадей треугольников, имеющих по одному равному углу. Вывод формул площадей треугольника через радиусы вписанной и описанной окружностей.
- •2. ∆ А1в1с2 и ∆ а1в1с1 имеют общую высоту в1н, следовательно
- •3. ∆ А1в2с2 и ∆ а1в1с2 имеют общую высоту с2к, следовательно
- •4. Найдем отношение площадей ∆ а1в1с1 и ∆ а2в2с2
- •Описанный четырехугольник. Свойство сторон описанного четырехугольника. Формула площади выпуклого четырехугольника . Частный случай, если диагонали взаимно перпендикулярны.
- •Задача по теме «Окружность».
- •Определение подобных многоугольников. Построение многоугольника, подобного данному. Теоремы об отношении периметров и площадей подобных многоугольников.
- •1) Подобные многоугольники можно разложить на одинаковое число подобных и одинаково расположенных треугольников.
- •Построение подобных многоугольников.
- •Неравенство треугольника.
- •Задача по теме «Элементы треугольника».
- •1.Теорема о сумме квадратов диагоналей параллелограмма.
- •2. Доказать тождества:
- •3. Задача по теме «Подобие».
Площадь прямоугольника, прямоугольного треугольника и площадь квадрата.
Определение 1. Для многоугольных фигур площадью называется положительная величина с такими свойствами: 1) Если фигура составлена из нескольких многоугольных фигур, то ее площадь равна сумме площадей этих фигур. 2) Равные треугольники имеют равную площадь.
Определение 2. Фигуры, имеющие одну и ту же площадь, называются равновеликими.
И
змерение
площади состоит в сравнении площади
данной фигуры с площадью фигуры,
принятой за единицу измерения. В
результате сравнения получается
некоторое число, принятое за численное
значение площади. Это число показывает,
во сколько раз площадь данной фигуры
больше (или меньше) площади фигуры,
принятой за единицу измерения площади.
За единицу измерения площади принимает
площадь подходящего квадрата. Площадь
этого квадрата называют квадратной
единицей площади, а сам квадрат –
единичным.
Теорема
о площади прямоугольника.
Площадь прямоугольника равна
произведению его сторон:
Доказательство:
1) Рассмотрим прямоугольник со сторонами a и b и площадью s.
2) Достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке. Площадь квадрата равна квадрату его стороны, поэтому
3) Из рисунка видно, что квадрат составлен из двух прямоугольников со сторонами a и b и двух квадратов, причем один из них со стороной a имеет площадь a2, а второй – со стороной b имеет площадь b2.
Следовательно, площадь каждого прямоугольника равна
Теорема о площади прямоугольного треугольника. Площадь прямоугольного треугольника равна половине произведения его катетов.
Доказательство: Пусть дан прямоугольный треугольник Т со сторонами a и b. Достроим его до прямоугольника Р со сторонами a и b, проведя через вершины его острых углов прямые, перпендикулярные катетам. Гипотенуза треугольника разбивает прямоугольник на два равных треугольника Т и Т1. Поэтому
Следствие
Площадь
квадрата равна квадрату стороны:
.
Задача по теме «Элементы треугольника»
Билет № 8
Определение треугольника. Доказать теорему о сумме углов треугольника. Замечательные точки треугольника: центр тяжести, ортоцентр, центры вписанной, описанной и вневписанной окружностей.
Определение. Треугольником называется геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Элементы треугольника: 1) вершины: А, В, C; 2) стороны: АВ, ВC, АС; 3) углы: А, В, C.
Обозначение треугольника: ∆ АВС.
Теорема:
Сумма углов треугольника равна 1800.
Доказательство: Пусть ABC' — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Замечательные точки треугольника — точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника.
Обычно они расположены внутри треугольника, но и это не обязательно. В частности, точка пересечения высот может находиться вне треугольника.
Замечательными точками треугольника являются
Точки пересечения:
Медиан — центроид, центр масс;
Биссектрис — инцентр, центр вписанной окружности;
Высот — ортоцентр;
Серединных перпендикуляров — центр описанной окружности;
Определение. Окружность называют окружностью, вневписанной в треугольник, иливневписанной окружностью, если она касается одной стороны треугольника и продолжений двух других сторон (рис.2).
Замечание У каждого треугольника существуют три вневписанных окружности. На рисунке 2 изображена одна из них.
Замечание Центр вневписанной окружности, изображенной на рисунке , лежит на биссектрисе угла B, а окружность касается стороны b. Для удобства обозначений и терминологии будем называть эту окружность вневписанной окружностью, касающейся стороны b, и обозначать её радиус символом rb .
