Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пневматические приводы и средства автоматизации...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
11.23 Mб
Скачать

3.2.1. Объемные компрессоры

Наиболее широкое примененение находят поршневые компрессоры.

Существует множество типов поршневых компрессоров. Они бывают простого и двойного действия, односту­пенчатые и многоступенчатые, одноцилиндровые и многоцилиндровые, с воздушным и водяным охлаждением.

Основными деталями поршневого компрессора простого действия (рис. 3.3) являются: цилиндр 2 с нагнетатель­ным 7 и всасывающим 1 клапанами в крышке 6; поршень 3; кривошипно-шатунный механизм 5, преобразующий вращательное движение приводного вала 4 в возвратно-поступательное движение поршня.

Рис. 3.3. Поршневой компрессор

При движении поршня к нижней «мертвой точке» (обратный ход — рис. 3.3, а) рабочая камера компрессора, образованная замкнутым объемом между поршнем 3 и крышкой 6 цилиндра, увеличивается и в ней создается вакуум. Под действием атмосферного давления открывается всасывающий клапан 1, через который в цилиндр поступает воздух. В это время нагнетательный клапан 7 удерживается в закрытом положении под действием ваку­ума в рабочей камере и высокого давления в нагнетательном трубопроводе. После достижения поршнем 3 крайне­го положения начинается процесс его движения к верхней «мертвой точке» (прямой ход— рис. 3.3, б). Объем рабо­чей камеры начинает уменьшаться, давление в ней возрастает, и всасывающий клапан закрывается. Нагнетатель­ный клапан открывается тогда, когда давление в цилиндре превысит давление в линии нагнетания. Полный цикл такого компрессора совершается за два хода поршня — обратный и прямой, т. е. за один оборот приводного вала.

Для увеличения производительности иногда применяют поршневые компрессоры двойного действия (рис. 3.4).

Рис. 3.4. Поршневой компрессор двойного действия

Компрессор, выполненный по такой конструктивной схеме, имеет две рабочие камеры при одном поршне, а всасывающие и нагнетательные клапаны установлены в обеих крышках. При ходе поршня вниз в верхней рабочей камере происходит процесс всасывания, а в нижней — процесс нагнетания. При движении поршня вверх сжатый воздух подается в напорную линию из верхней рабочей камеры, в то время как процесс всасыва­ния осуществляется в нижней. Производительность компрессора двойного действия практически в два раза выше производительности компрессора традиционной конструкции при одинаковых объемах рабочих камер.

Одноступенчатые компрессоры позволяют получить сжатый воздух с избыточным давлением до 1,3 МПа (13 бар), а развиваемая ими производительность достигает 20 тыс. м3/час.

Для достижения более высоких значений давления сжатого воздуха (до 100 МПа) используют поршневые компрессоры многоступенчатого исполнения (рис. 3.5).

Рис. 3.5. Двухступенчатый поршневой компрессор

Всасываемый воздух предварительно сжимается в первой ступени 1, проходит промежуточное охлажде­ние, а затем подвергается сжатию во второй ступени 3. Увеличение степени сжатия воздуха обеспечивается тем, что объем рабочей камеры второй ступени меньше, чем первой. Необходимость охлаждения сжатого воздуха возникает в связи с интенсивным нагревом воздуха в процессе сжатия (в соответствии с законом Гей-Люссака), особенно если степень сжатия значительна. Чтобы избежать этого, в конструкцию компрессора вво­дят охладитель 2.

Поршневые компрессоры подают воздух в нагнетательный трубопровод неравномерно, отдельными порци­ями. Степень неравномерности увеличивается еще и вследствие того, что скорость движения поршня не по­стоянна, а изменяется по синусоидальному закону. Для сглаживания неравномерности подачи воздуха, а сле­довательно, и пульсаций давления в линии нагнетания применяют многопоршневые компрессоры, ходы порш­ней которых сдвинуты по фазе.

Все рассмотренные конструкции имеют один существенный недостаток: в картер поршневых компрессоров заливают масло, предназначенное для смазки трущихся поверхностей. Высокие температуры в поршневом пространстве компрессоров и на начальном участке линии питания приводят к парообразованию и к частично­му термическому разложению масла. В результате часть масла окисляется и в виде нагара и лакообразной пленки осаждается на внутренних полостях компрессоров и трубопроводов, а легкие фракции, в виде паров и мелкодисперсной фазы, уносятся воздухом в систему.

Сжатый воздух, не содержащий паров масла, можно получить без применения маслоудерживающих филь­тров при помощи мембранного компрессора (рис. 3.6).

Рис. 3.6. Мембранный компрессор

В мембранном компрессоре процесс получения сжатого воздуха происходит в принципе так же, как и в поршневом, стой лишь разницей, что в нем подвижной поршень заменен жестко закрепленной гибкой мембра­ной 1. Замкнутый объем изменяется за счет деформации мембраны при возвратно-поступательном движении штока 2.

Давление воздуха в мембранных компрессорах ограничено прочностными характеристиками мембраны и не превышает 0,3 МПа.

Основной недостаток мембранных компрессоров — необходимость периодической смены мембраны по причине выхода ее из строя.

Ротационные компрессоры, как и поршневые, работают с принудительным выталкиванием сжатого воздуха, однако в их конструкции отсутствуют клапаны и кривошипно-шатунный механизм. На рис. 3.7 изображен рота­ционный пластинчатый компрессор.

Рис. 3.7. Пластинчатый (шиберный) компрессор

В машинах такого типа вследствие эксцентричного расположения ротора 3 в цилиндрическом статоре 1 между ними образуется серповидная полость. В радиальных пазах ротора 3 размещены подвижные пластины 2, которые под действием центробежной силы при вращении ротора выдвигаются из пазов и плотно прижима­ются к внутренней цилиндрической поверхности статора 1 (часто применяют еще и дополнительный принуди­тельный поджим пластин при помощи пружин либо путем подведения к торцам пластин сжатого воздуха от линии нагнетания). Вращающиеся пластины делят пространство между ротором и статором на рабочие каме­ры, объем которых меняется по мере вращения ротора. За один оборот ротора объем рабочих камер вначале увеличивается (при этом пластины выдвигаются из пазов), а затем уменьшается (при этом пластины задвига­ются в пазы). В том месте, где при вращении ротора объем рабочих камер увеличивыется, расположен входной патрубок, а на участке, где их объем уменьшается, — выходной. Степень сжатия, а следовательно, и значение давления на выходе пластинчатого компрессора (до 0,8 МПа) значительно меньше, чем у поршневого, но его конструктивное исполнение гораздо проще.

Основные элементы конструкции винтового компрессора — два находящихся в зацеплении винта (рис. 3.8) ведущий 1 и ведомый 2. При вращении винтов их винтовые линии, взаимно замыкаясь, отсекают некоторый объем воздуха в камере всасывания, перемещают его вдоль оси винтов и в конечном итоге вытесняют в камеру нагнетания. Воздух через компрессор двигается поступательно и плавно, без завихрения, как гайка по резьбе при вращении винта.

Рис. 3.8. Винтовой компрессор

Процесс перемещения воздуха происходит по всей длине винтов непрерывно, и при постоянной частоте вращения вала компрессора обеспечивается равномерная, без пульсаций, подача. Недостаток винтовых ком­прессоров — довольно сложная технология изготовления винтов; преимущество — равномерность подачи воздуха, а следовательно, отсутствие колебаний уровня давления в линии нагнетания. Винтовые компрессоры обеспечивают давление сжатого воздуха до 2,5 МПа, а расход воздуха в них достигает 30 тыс. м3/час.

На рис. 3.9 изображен компрессор Рутса, также относящийся к ротационным компрессорам.

Рис. 3.9. Компрессор Рутса

Рабочими органами такого компрессора служат два синхронно вращающихся специально спрофилирован­ных вытеснителя 1. Воздух, попадая в рабочие камеры, образованные между вытеснителями и корпусом 3, переносится из зоны всасывания в зону нагнетания. Рабочие органы не находятся в зацеплении друг с другом, а синхронизация их вращения осуществляется шестернями 2, расположенными в специальном отделении кор­пуса и находящимися в зацеплении между собой. Между самими вытеснителями, а также между вытеснителя­ми и корпусом имеются гарантированные зазоры, и эта особенность конструкции обусловливает относительно небольшие значения выходного давления. Практическое отсутствие трущихся поверхностей в рабочей камере обеспечивает возможность достижения большой производительности благодаря высокой частоте вращения роторов.