
- •1. Структура пневматических приводов
- •2. Физические основы функционирования пневмосистем
- •2.1 Основные параметры газа
- •2.2 Основные физические свойства газов
- •2.3. Основные газовые законы
- •2.4. Течение газа
- •2.4.1. Расход
- •2.4.2. Уравнение Бернулли
- •2.4.3. Режимы течения
- •3. Энергообеспечивающая подсистема
- •3.1. Производство и подготовка сжатого воздуха
- •3.2.1. Объемные компрессоры
- •3.2.2. Динамические компрессоры
- •3.3. Устройства очистки и осушки сжатого воздуха
- •3.4 Ресиверы
- •3.5. Трубопроводы. Соединения трубопроводов
- •3.6. Блоки подготовки воздуха
- •4. Исполнительная подсистема
- •4.1. Пневматические цилиндры
- •4.1.1. Пневмоцилиндры одностороннего действия
- •4.1.3. Позиционирование пневмоцилиндров
- •4.1.4. Бесштоковые пневмоцилиндры
- •4.1.5. Защита штока пневмоцилиндра от проворота
- •4.1.6. Монтаж пневмоцилиндров
- •4.2. Поворотные пневматические двигатели
- •4.4. Специальные пневматические исполнительные устройства
- •4.4.1. Цанговые зажимы
- •4.4.2. Пневматические захваты
- •4.4.3. Вакуумные захваты
- •5. Направляющая и регулирующая подсистема
- •5.1. Пневматические распределители
- •5.1.1. Моностабильные пневмораспределители
- •5.1.2. Бистабилькые пневмораспределители
- •5.1.3. Монтаж пневмораспределителей
- •5.1.4. Определение параметров пневмораспределителей
- •5.2. Запорные элементы
- •5.3. Устройства регулирования расхода
- •5.4. Устройства регулирования давления
- •6. Информационная подсистема
- •6.1. Пневматические путевые выключатели
- •6.2. Струйные датчики положения
- •6.5. Счетчики импульсов
- •7. Логико-вычислительная подсистема
- •7.1. Основные логические функции
- •7.2. Логические пневмоклапаны
- •7.3. Пневмоклапаны выдержки времени
- •7.4. Реализация функции запоминания сигнала в пневматических системах
- •8. Пневматические приводы технологического оборудования
- •8.1. Циклические пневмосистемы хода
- •8.1.1. Формы представления хода технологического процесса
- •8.1.2. Методы проектирования пневматических сау
- •8.1.3. Переключающие регистры
- •8.1.4. Реализация сервисных функций в пневматических системах
- •8.2. Пневмогидравлические приводы
- •8.3. Системы позиционирования
- •9. Релейно-контактные системы управления
- •9.1. Устройства ввода электрических сигналов
- •9.1.2. Электромеханические путевые (концевые) выключатели
- •9.1.3. Бесконтактные путевые выключатели
- •9.2. Устройства обработки электрических сигналов
- •9.3. Устройства преобразования сигналов
- •9.3.1. Электропневматические преобразователи
- •9.3.2. Пневмоэлектрические преобразователи (реле давления)
- •9.4. Реализация логических функций в релейно-контактных системах управления
- •9.5. Реализация функции запоминания сигнала в релейно-контактных системах управления
- •9.6. Правила построения релейно-контактных схем
- •9.7. Проектирование релейно-контактных систем управления
- •9.8. Переключающие регистры
- •9.9. Реализация сервисных функций в релейно-контактных системах управления
- •9.10. Электропневматические приводы с управлением от промышленных логических контроллеров
- •10. Эксплуатация пневматических приводов
- •10.1. Техническое обслуживание пневматических приводов
- •10.2. Поиск и устранение неисправностей
- •10.3. Требования безопасности
- •11.1. Основные газовые законы Закон Бойля — Мариотта
- •II. 2. Расчет внутреннего диаметра трубопроводов
- •11.4. Выбор пневмораспределителей
4.4. Специальные пневматические исполнительные устройства
Существует целый ряд пневматических исполнительных устройств, которые нельзя однозначно отнести к одному из ранее описанных типов, в связи с чем такие устройства называют специальными. Рассмотрим наиболее распространенные конструкции.
4.4.1. Цанговые зажимы
Цанговые зажимы широко используют в автоматизированном станочном оборудовании для надежного зажатия и удержания тел вращения в процессе их обработки (рис. 4.28).
Рис. 4.28. Пневматический цанговый зажим
Цанговый зажим состоит из следующих основных деталей: цанги 1, обжимной втулки 2, кольцевого поршня 3 с пружинным возвратом, шариков 4 и корпуса 5.
При подаче сжатого воздуха в зажим поршень 3, сжимая возвратную пружину, перемещается влево и вдавливает шарики 4 в клиновой зазор между корпусом 5 и обжимной втулкой 2, которая, в свою очередь, смещается вправо, сжимая лепестки цанги 1 и осуществляя зажатие детали.
Для разжатия заготовки сжатый воздух из поршневой полости сбрасывают в атмосферу, при этом поршень возвращается в исходное положение, освобождая шарики. В результате цанга разжимается, смещая обжимную втулку в исходную позицию.
4.4.2. Пневматические захваты
Рис. 4.29. Пневматический захват с параллельным движением пальцев
Практически любой робот-манипулятор снабжен захватным устройством, предназначенным для того, чтобы захватить какой-либо объект, удерживать его при перемещении и ориентации в пространстве, после чего отпустить в нужной точке. На рис. 4.29 показана конструкция пневматического захвата с параллельным движением захватных пальцев.
При подаче сжатого воздуха в поршневую полость пневмоцилиндра двустороннего действия шток выдвигается и через кулисный механизм разводит захватывающие пальцы (рис. 4.29, а). При обратном ходе поршня пальцы сводятся (рис. 4.29, б).
По конструктивному исполнению захваты подразделяются на параллельные (рис. 4.30, а), поворотные (рис. 4.30, б) и трехточечные (рис. 4.30, в).
Рис. 4.30. Пневматические захваты
Как правило, конструкции захватов реализуют удержание объекта как по внешним, так и по внутренним поверхностям, а их приводные поршни с целью обеспечения контроля срабатывания захвата снабжают постоянным магнитом.
4.4.3. Вакуумные захваты
В вакуумных захватах объект удерживается вследствие разрежения, создаваемого в полости между эластичным захватом (присоской) и поверхностью самого объекта (рис. 4.31, а), при этом для получения вакуума в захвате важно, чтобы последняя была достаточно гладкой и плотной.
Рис. 4.31. Вакуумный захват
В заводских сетях для создания вакуума используют вакуум-насосы. В этих условиях присоска вакуумного захвата должна управляться аппаратурой, способной работать с давлениями ниже атмосферного.
В случаях, когда необходимо обеспечить вакуум на конкретном участке технологического оборудования, применяют эжекторы (рис, 4.31, б), которые позволяют создавать вакуум в рабочем канале до -0,09 МПа (-0,9 бар) при давлении на входе 0,7 МПа (7 бар). Принцип действия эжектора заключается в понижении давления на тех участках трубопровода, где воздух движется с большими скоростями (в соответствии с уравнением Бернулли). При протекании по каналу 2 сжатый воздух эжектирует (вовлекает в поток) воздух из камеры 1, в результате чего в ней возникает разрежение.
Помимо типовых конструкций эжекторов (рис. 4.32, а) производители элементов промышленной пневмоавтоматики выпускают эжекторные головки с принудительным отталкиванием детали от присоски с помощью сжатого воздуха после завершения операции захвата (рис. 4.32, б), а также компактные эжекторы с электромагнитным управлением процессом захвата и отталкивания заготовки (рис. 4.32, в).
Рис. 4.32. Эжекторы
Очевидно, что усилие с которым объект удерживается в вакуумных захватах, зависит не только от глубины вакуума, но и от площади присоски (или суммарной площади нескольких присосок).
Для поддержания вакуума в системе при выходе из строя одного или даже нескольких вакуумных захватов применяют ограничители расхода сжатого воздуха — вакуумные клапаны (рис. 4.33).
Рис. 4.33. Вакуумный клапан
При повреждении присоски или ее контакте с неочищенной поверхностью захватываемого объекта подпружиненный запорный элемент 2 прижимается к седлу 1 клапана, образующимся воздушным потоком, тем самым резко ограничивая возможность попадания воздуха в вакуумную систему. В результате в систему через дроссельное отверстие запорного элемента 2 проникает только небольшая часть воздуха, благодаря чему вакуум в других захватах сохраняется.
В целях обеспечения надежного функционирования нескольких присосок, установленных на одной линии, каждая из них должна быть снабжена вакуумным клапаном.