
- •1. Структура пневматических приводов
- •2. Физические основы функционирования пневмосистем
- •2.1 Основные параметры газа
- •2.2 Основные физические свойства газов
- •2.3. Основные газовые законы
- •2.4. Течение газа
- •2.4.1. Расход
- •2.4.2. Уравнение Бернулли
- •2.4.3. Режимы течения
- •3. Энергообеспечивающая подсистема
- •3.1. Производство и подготовка сжатого воздуха
- •3.2.1. Объемные компрессоры
- •3.2.2. Динамические компрессоры
- •3.3. Устройства очистки и осушки сжатого воздуха
- •3.4 Ресиверы
- •3.5. Трубопроводы. Соединения трубопроводов
- •3.6. Блоки подготовки воздуха
- •4. Исполнительная подсистема
- •4.1. Пневматические цилиндры
- •4.1.1. Пневмоцилиндры одностороннего действия
- •4.1.3. Позиционирование пневмоцилиндров
- •4.1.4. Бесштоковые пневмоцилиндры
- •4.1.5. Защита штока пневмоцилиндра от проворота
- •4.1.6. Монтаж пневмоцилиндров
- •4.2. Поворотные пневматические двигатели
- •4.4. Специальные пневматические исполнительные устройства
- •4.4.1. Цанговые зажимы
- •4.4.2. Пневматические захваты
- •4.4.3. Вакуумные захваты
- •5. Направляющая и регулирующая подсистема
- •5.1. Пневматические распределители
- •5.1.1. Моностабильные пневмораспределители
- •5.1.2. Бистабилькые пневмораспределители
- •5.1.3. Монтаж пневмораспределителей
- •5.1.4. Определение параметров пневмораспределителей
- •5.2. Запорные элементы
- •5.3. Устройства регулирования расхода
- •5.4. Устройства регулирования давления
- •6. Информационная подсистема
- •6.1. Пневматические путевые выключатели
- •6.2. Струйные датчики положения
- •6.5. Счетчики импульсов
- •7. Логико-вычислительная подсистема
- •7.1. Основные логические функции
- •7.2. Логические пневмоклапаны
- •7.3. Пневмоклапаны выдержки времени
- •7.4. Реализация функции запоминания сигнала в пневматических системах
- •8. Пневматические приводы технологического оборудования
- •8.1. Циклические пневмосистемы хода
- •8.1.1. Формы представления хода технологического процесса
- •8.1.2. Методы проектирования пневматических сау
- •8.1.3. Переключающие регистры
- •8.1.4. Реализация сервисных функций в пневматических системах
- •8.2. Пневмогидравлические приводы
- •8.3. Системы позиционирования
- •9. Релейно-контактные системы управления
- •9.1. Устройства ввода электрических сигналов
- •9.1.2. Электромеханические путевые (концевые) выключатели
- •9.1.3. Бесконтактные путевые выключатели
- •9.2. Устройства обработки электрических сигналов
- •9.3. Устройства преобразования сигналов
- •9.3.1. Электропневматические преобразователи
- •9.3.2. Пневмоэлектрические преобразователи (реле давления)
- •9.4. Реализация логических функций в релейно-контактных системах управления
- •9.5. Реализация функции запоминания сигнала в релейно-контактных системах управления
- •9.6. Правила построения релейно-контактных схем
- •9.7. Проектирование релейно-контактных систем управления
- •9.8. Переключающие регистры
- •9.9. Реализация сервисных функций в релейно-контактных системах управления
- •9.10. Электропневматические приводы с управлением от промышленных логических контроллеров
- •10. Эксплуатация пневматических приводов
- •10.1. Техническое обслуживание пневматических приводов
- •10.2. Поиск и устранение неисправностей
- •10.3. Требования безопасности
- •11.1. Основные газовые законы Закон Бойля — Мариотта
- •II. 2. Расчет внутреннего диаметра трубопроводов
- •11.4. Выбор пневмораспределителей
4. Исполнительная подсистема
Воздействие системы автоматического управления (САУ) непосредственно на какой-либо технологический объект осуществляется исполнительными механизмами, которые и составляют исполнительную подсистему САУ (см. рис. 1.4). Энергия давления сжатого воздуха преобразуется в механическую энергию исполнительных механизмов при воздействии воздуха на их рабочие органы, которыми могут служить поршень, лопатка или мембрана. Очевидно, что при этом усилие, развиваемое исполнительным механизмом, пропорционально давлению в нем, а скорость движения выходного звена определяется расходом сжатого воздуха. Таким образом, исполнительные механизмы осуществляют необходимые технологические операции, обеспечивая требуемые усилия и скорости.
Широкая гамма конструктивных решений исполнительных механизмов дает возможность осуществлять множество разнообразных операций в различных технологических процессах. Фиксация и зажим, тиснение и прессование деталей, их перемещение и ориентировка в пространстве обеспечиваются соответствующими исполнительными механизмами, которые могут выполнять следующие виды движения:
линейное (возвратно-поступательное);
поворотное (в ограниченном угловом диапазоне);
вращательное.
По реализуемому виду движения исполнительные механизмы подразделяются на три основных типа:
линейные пневмодвигатели — пневматические цилиндры;
/поворотные пневмодвигатели;
• пневмодвигатели вращательного действия — пневматические моторы.
В отдельную группу можно выделить специальные пневматические исполнительные механизмы, такие как вакуумные захваты, цанговые зажимы и т. п.
Все перечисленные типы исполнительных механизмов и каждая из существующих конструкций определенного типа имеют свои преимущества и недостатки, а следовательно, все они характеризуются некоторой предпочтительной областью применения.
Исполнительный механизм выбирают исходя из его соответствия определенному набору критериев, как то:
вид движения — вращательное, поворотное или линейное;
направление движения — реверсивное или нереверсивное;
развиваемая скорость вращения (угловая) или перемещения (линейная);
создаваемый момент или усилие;
эргономические показатели.
4.1. Пневматические цилиндры
Среди множества исполнительных механизмов пневматические цилиндры (пневмоцилиндры) выделяются разнообразием конструкций и широким диапазоном основных параметров:
диаметр поршня: 2,5 — 320,0 мм;
рабочий ход: 1 — 2000 мм (в бесштоковых конструкциях до 10 м);
развиваемое усилие: 2 — 50000 Н;
скорость движения выходного звена: 0,02 — 1,50 м/с.
Пневмоцилиндры различаются также по таким показателям, как значения допустимых давления и нагрузки, наличие или отсутствие специальных элементов конструкции. Разработаны и выпускаются пневмоцилиндры для особых случаев эксплуатации: с увеличенной коррозионной стойкостью; жаропрочные — для работы в условиях высокой температуры (200°С и выше); для работы в системах с давлением рабочей среды до 2 МПа; с усиленным штоком — для большей устойчивости; с повышенной защитой от агрессивных сред (с применением пластиковых покрытий и специальных сталей) и др.
По функциональным возможностям пневмоцилиндры подразделяют на два базовых типа:
пневмоцилиндры одностороннего действия: подача сжатого воздуха в них осуществляется для выполне ния рабочего хода в одном направлении;
пневмоцилиндры двустороннего действия: полезная работа совершается ими как при прямом, так и при обратном ходе поршня.