
- •4. Присвойте переменной σ значение постоянной Стефана-Больцмана
- •2 Повторяющиеся вычисления
- •2.1 Определение дискретного аргумента
- •2.2 Определение функции
- •2 Рисунок 3 - Использование функции для вычисления ответов .3 Форматирование результата
- •3 Графики
- •3.1 Изменение размеров графика
- •3.2 Форматирование графика
- •Задания
3.1 Изменение размеров графика
Размер графика, показанного на рисунке 10, установлен по умолчанию. В Mathcad можно установить любой размер графика: достаточно выделить график и растянуть его до желаемого размера.
3.2 Форматирование графика
График на рисунке 10 обладает некоторыми свойствами, установленными по умолчанию, к ним относятся: деления по осям, отсутствие линий сетки и сплошная линия графика. Их можно изменить, форматируя график.
Рассмотрим пример, иллюстрирующий этапы форматирования:
Дважды щёлкните по графику, чтобы вызвать диалоговое окно. Оно позволит установить все доступные характеристики графика.
Щёлкните по закладке "Трассировки" в диалоговом окне, чтобы получить доступ к странице выбора характеристик кривых.
Щёлкните на строке "Trace 1" (см. рисунок 7) в списке под заголовком "Legend Label" чтобы Mathcad поместил текущие установки для кривой 1.
Щёлкните на стрелке под столбцом "Type" чтобы выбрать тип кривой.
Выберите тип "bar" из раскрывающегося списка, щёлкнув на нём.
Нажмите кнопку "ОК" чтобы увидеть результат изменения характеристик. Mathcad изобразит график в виде столбчатой диаграммы вместо того, чтобы соединить точки сплошными линиями.
Щёлкните вне графика, чтобы отменить его выделение.
Рисунок 7 - Панель свойств графика.
Задания
1. Создайте таблицу значений выражения по вариантам (см. таблицу 1):
Таблица 1 – Варианты к заданию 1
Вариант |
Выражение |
Диапазон |
Шаг 1 |
Шаг 2 |
|
|
|
1 |
0,5 |
|
|
|
1 |
0,01 |
|
|
|
0,5 |
0,1 |
|
|
|
1 |
0,5 |
|
|
|
1 |
0,1 |
|
|
|
0,5 |
0,01 |
|
|
|
1 |
0,5 |
|
|
|
1 |
0,01 |
|
|
|
0,5 |
0,1 |
|
|
|
1 |
0,5 |
|
|
|
0,5 |
0,1 |
|
|
|
1 |
0,1 |
|
|
|
1 |
0,05 |
|
|
|
0,5 |
0,1 |
|
|
|
1 |
0,5 |
|
|
|
0,1 |
0,05 |
|
|
|
1 |
0,1 |
|
|
|
0,5 |
0,01 |
|
|
|
1 |
0,5 |
|
|
|
1 |
0,2 |
|
|
|
0,5 |
1 |
|
|
|
1 |
0,2 |
|
|
|
0,5 |
1 |
|
|
|
0,5 |
0,1 |
|
|
|
1 |
0,2 |
|
|
|
0,5 |
0,1 |
|
|
|
1 |
0,5 |
|
|
|
0,5 |
0,01 |
|
|
|
1 |
0,05 |
|
|
|
0,2 |
0,5 |
2. Отформатируйте результаты задания 1.
Установите отличное от стандартного количество знаков после запятой.
Поменяйте систему счисления (в некоторых версиях пакета это невозможно).
3. Определить функцию, вычислить ее значения на заданном промежутке и построить график по вариантам (см. таблицу 2 ).
Примечание: Диапазон отображаемых значений функции задается на графике, а аргумента перед графиком.
Таблица 2 – Варианты к заданию 3
Вариант |
Функция |
Диапазон переменной |
Шаг |
Диапазон значений функции |
|
|
|
5 |
|
|
|
|
π/12 |
|
|
|
|
0.5 |
|
|
|
|
0.5 |
|
|
|
|
0.1 |
|
|
|
|
0.1 |
|
|
|
|
0.01 |
|
|
|
|
0.1 |
|
|
|
|
0.5 |
|
|
|
|
0.1 |
|
|
|
|
0.1 |
|
|
|
|
0.5 |
|
|
|
|
1.5 |
|
|
|
|
0.05 |
|
|
|
|
0.1 |
|
|
|
|
0.2 |
|
|
|
|
1 |
|
|
|
|
0.5 |
|
|
|
|
1 |
|
|
|
|
0.1 |
|
|
|
|
0.5 |
|
|
|
|
0.1 |
|
|
|
|
0.2 |
|
|
|
|
π/12 |
|
|
|
|
1 |
|
|
|
|
0.5 |
|
|
|
|
1 |
|
|
|
|
1 |
|
|
|
|
0.5 |
|
|
|
|
1 |
|
Пример решения подобных задач:
1. Определена функция f(x);
2. Задан аргумент на промежутке от 2π до 2π с шагом π/6;
3. На графике отображены значения функции на диапазоне от-1 до1 (рисунок 8).
4
f(x)=
1 |
0.866 |
0.5 |
-1.07210-15 |
-0.5 |
-0.866 |
-1 |
-0.866 |
-0.5 |
2.72610-15 |
0.5 |
0.866 |

Рисунок 8 – График функции f(x). Рисунок 9 – Значения функции f(x).