- •Основы информационной безопасности и введение в современную криптологию
- •8 Глава 129
- •Предисловие
- •Введение
- •Формальная криптография;
- •Математическая криптография;
- •1. Криптографические системы «докомпьютерной эры» и проблемы современной криптографии
- •1.1 Криптография древнего мира. Шифр Цезаря и его криптостойкость
- •1.2 Шифр Атбаш и его модификации
- •1.3 Тарабарская грамота как аналог шифра Атбаш
- •1.4 Шифр Плейфера
- •1.5 Шифр adfgvx
- •1.6 Шифр Виженера
- •1.7 Формальная криптография
- •1.8 Математическая криптография
- •1.9 Современная компьютерная криптография и ее основные проблемы
- •2 Режимы шифрования для симметричных алгоритмов.
- •2.1 Режимы простой замены (электронная кодовая книга ecb)
- •2.2 Режим сцепления блоков (Cipher Block Chaining (cbc))
- •2.2 Режимы гаммирования
- •2.3 Режим гаммирования с обратной связью
- •Функции шифрования симметричных криптосистем
- •3.1 Стандарт шифрования данных des. Data Encryption Standard
- •3.2 Преобразования Сетью Фейстеля
- •3.3 Режимы работы алгоритма des
- •3.4.1Алгоритм гост – 28147-89
- •3.4.2Ключи в кзу
- •3.4.3В блоке подстановки k
- •3.5.1Описание алгоритма
- •4.Глава
- •4.1Хэш - функция
- •4.2Коллизия
- •4.4Пример простого хеширования
- •4.3Современные виды хеширования
- •5.Глава Элементы алгебры и теории чисел
- •5.1Быстрое возведение в степень.
- •5.2Нахождение простого числа
- •5.3Метод Шермана — Лемана
- •5.3Метод Раббина-Миллера
- •5.4Нахождение обратного элемента по модулю
- •5.5Теорема ферма, Эйлера
- •5.6Алгоритм Эвклида
- •5.7Расширенный алгоритм Эвклида
- •5.8 Китайская теорема об остатках
- •5.11 Нахождение с помощью расширенного алгоритма Евклида
- •5.11Квадратичные вычеты
- •5.11Нахождение генераторов
- •6. Глава
- •6.1 Алгоритм Диффи – Хеллмана
- •6.2Описание алгоритма
- •6.3Алгоритм Диффи — Хеллмана с тремя и более участниками
- •6.7Криптографическая стойкость
- •6.8Rsa алгоритм
- •6.10Алгоритм шифрования rsa
- •6.11Алгоритм подписи rsa
- •7.16Эль-Гамаля
- •6.13История dsa
- •6.14Алгоритм цифровой подписи dsa
- •6.15 Алгоритм цифровой подписи гост р 3410-94
- •7.1Эллиптическая кривая
- •7.2 Эллиптические кривые в криптографии
- •7.3 Метрика операций на эк
- •7.3.1Сложение различных точек
- •7.3.2Удвоение
- •7.7Порядок эллиптической кривой
- •7.6Теорема Хассе
- •7.5 Порядок точки на эллиптической кривой
- •7.8Порядок точки на эллиптической кривой (Теория, можешь не читат)
- •7.9Криптография на эллиптических кривых
- •7.10Пример эллиптической кривой над конечным полем.
- •7.11Кратные точки.
- •7.12Безопасность криптографии с использованием эллиптических кривых.
- •7.13Алгоритм Диффи-Хелмана на эллиптической кривой
- •7.14Алгоритм dsa на эллиптической кривой
- •7.14.1Алгоритм эцп на основе эллиптических кривых (ecdsa)
- •7.15Алгоритм Эль-Гамала на эллиптической кривой
- •Литература
- •8 Глава
- •8.1Криптоанализ
- •8.2Классический криптоанализ.
- •8.3 Современный криптоанализ
- •8.4Универсальные методы криптоанализа.
- •8.4.1Метод полного перебора
- •8.4.2Атака по ключам
- •8.4.3Частотный анализ
- •8.4.4Метод "встречи посередине"
- •8.4.5Криптоанализ симметричных шифров
- •8.4.6Дифференциальный криптоанализ
- •8.4.7Дифференциальный анализ на основе сбоев.
- •8.4.8Дифференциальный метод криптоанализа des.
- •8.4.9Линейный криптоанализ .
- •8.4.10Криптоанализ асимметричных шифров
- •8.4.11Метод безключевого чтения rsa.
- •8.4.12Криптоанализ хеш-функций
- •8.4.13Криптоанализ по побочным каналам
- •8.5Нанотехнологии в криптоанализе
8.3 Современный криптоанализ
По мере развития новых методов шифрования математика становилась всё более и более значимой. Так, например, при частотном анализе криптоаналитик должен обладать знаниями и в лингвистике, и в статистике. В то время как теоретические работы по криптоанализу Энигмы выполнялись преимущественно математиками, например, Аланом Матисоном Тьюрингом. Тем не менее благодаря всё той же математике криптография достигла такого развития, что количество необходимых для взлома элементарных математических операций стало достигать астрономических значений. Современная криптография стала гораздо более устойчивой к криптоанализу, чем некогда используемые, устаревшие методики, для взлома которых было достаточно ручки и листа бумаги. Может показаться, что чистый теоретический криптоанализ не способен более эффективно взламывать современные шифры.
Появление новых криптографических алгоритмов приводит к разработке методов их взлома. Если целью криптоаналитика является раскрытие возможно большего числа шифров, то для него наилучшей стратегией является разработка универсальных методов анализа. Но эта задача является также и наиболее сложной. Результатом возникновения каждого нового метода криптоанализа является пересмотр оценок безопасности шифров, что, в свою очередь, влечет необходимость создания более стойких шифров. Таким образом, исторические этапы развития криптографии и криптоанализа неразрывно связаны.
Криптоанализ ставит своей задачей в разных условиях получить дополнительные сведения о ключе шифрования, чтобы значительно уменьшить диапазон вероятных ключей. Криптограф Ларс Кнудсен предлагает следующую классификацию успешных исходов криптоанализа блочных шифров в зависимости от объема и качества секретной информации, которую удалось получитью.
Полный взлом– криптоаналитик извлекает секретный ключ.
Глобальная дедукция– криптоаналитик разрабатывает функциональный эквивалент исследуемого алгоритма, позволяющий зашифровывать и расшифровывать информацию без знания ключа.
Частичная дедукция– криптоаналитику удается расшифровать или зашифровать некоторые сообщения.
Информационная дедукция– криптоаналитик получает некоторую информацию об открытом тексте или ключе.
Попытка
криптоанализа называется атакой. Прежде
чем перейти к рассмотрению типов
криптоаналитических атак,
введем ряд понятий и обозначений, которые
потребуются нам в дальнейшем: открытый
текст
будем обозначать буквой
,
шифртекст
- буквой
(в качестве
может выступать любая последовательность
битов: текстовый
файл,
оцифрованный звук, точечный рисунок и
т.д.). Пусть для зашифрования и расшифрования
используются ключи
и
соответственно (в симметричной
криптографии
);
обозначим функцию зашифрования
,
расшифрования
–
.
Тогда выполняются соотношения
.
Известны четыре основных типа криптоаналитических атак. В каждом случае предполагается, что криптоаналитик знает используемый алгоритм шифрования.
Атака на основе только шифртекста. Криптоаналитик располагает шифртекстами
,
полученными из неизвестных открытых
текстов
различных
сообщений. Требуется найти хотя бы один
из
(или соответствующий ключ
),
исходя из достаточного числа m криптограмм,
или убедиться в своей неспособности
сделать это. В качестве частных случаев
возможно совпадение ключей:
или совпадение открытых текстов:
.Атака на основе открытого текста. Криптоаналитик располагает парами
открытых и соответствующим им
зашифрованных текстов. Требуется
определить ключ ki
для хотя бы одной из пар. В частном
случае, когда
,
требуется определить ключ
или, убедившись в своей неспособности
сделать это, определить открытый текст
еще одной криптограммы
,
зашифрованной на том же ключе.Атака на основе подобранного открытого текста отличается от предыдущей лишь тем, что криптоаналитик имеет возможность выбора открытых текстов
.
Цель атаки та же, что и предыдущей.
Подобная атака возможна, например, в
случае, когда криптоаналитик имеет
доступ к шифратору передающей стороны.Атака на основе адаптивно подобранного открытого текста. Это частный случай вышеописанной атаки с использованием подобранного открытого текста. Криптоаналитик может не только выбирать используемых шифруемый текст, но также уточнять свой последующий выбор на основе полученных ранее результатов шифрования.
Криптоанализ эволюционировал вместе с развитием криптографии: новые, более совершенные шифры приходили на смену уже взломанным системам кодирования только для того, чтобы криптоаналитики изобрели более изощренные методы взлома систем шифрования. Понятия криптографии и криптоанализа неразрывно связаны друг с другом: для того, чтобы создать устойчивую ко взлому систему, необходимо учесть все возможные способы атак на неё.
На рис.1 методы криптоанализа систематизированы по хронологии их появления и применимости для взлома различных категорий криптосистем. Горизонтальная ось разделена на временные промежутки: в область "вчера" попали атаки, которые успешно применялись для взлома шифров в прошлом; "сегодня" - методы криптоанализа, представляющие угрозу для широко используемых в настоящее время криптосистем; "завтра" - эффективно применяемые уже сегодня методы, значение которых в будущем может возрасти, а также методы, которые пока не оказали серьезного влияния на криптологию, однако со временем могут привести прорывам во взломе шифров. На вертикальной оси обозначены области применения методов криптоанализа: для взлома криптосистем с секретным ключом, открытым ключом или хеш-функций.
Рис. 1. Методы криптоанализа
