
- •Л.И. Бондалетова Промышленная экология
- •Введение
- •Глава 1 Производство и окружающая среда
- •1.1. Система «Химическое производство – окружающая природная среда»
- •1.1.1. Система и ее основные свойства
- •1.1.2. Воздействие химического производства на окружающую природную среду
- •1.1.3. Основные факторы окружающей природной среды
- •1.2. Общие положения о производственном процессе
- •1.2.1. Химическое производство и химико-технологический процесс
- •1.2.2. Показатели эффективности химического производства и химико-технологического процесса
- •1.3. Химико-технологическая система
- •1.3.1. Химико - технологический процесс как химико - технологическая система
- •1.3.2. Сырьевые ресурсы химико-технологической системы
- •1.3.2.1. Характеристика и запасы сырья
- •1.3.2.2. Принципы обогащения сырья
- •1.3.2.3. Комплексное использование сырья
- •1.3.2.4. Воздух и вода как сырье химической промышленности
- •1.3.2.5. Промышленная водоподготовка
- •1.3.2.6. Водообеспечение промышленных предприятий
- •1.3.3. Энергетические ресурсы химико-технологической системы
- •1.3.3.1. Энергия в химическом производстве
- •1.3.3.2. Рациональное использование энергии
- •1.3.3.3. Вторичные энергетические ресурсы
- •1.3.4. Отходы производства
- •1.4. Взаимодействие производства и окружающей среды
- •Глава 2 Горно - добывающая промышленность
- •2.1. Загрязнение атмосферного воздуха при разработке месторождений
- •2.2. Мероприятия, снижающие негативные последствия локального загрязнения воздушной среды Снижение загрязнения атмосферы газообразными продуктами
- •Снижение загрязнения атмосферы минеральной пылью
- •Загрязнение атмосферы минеральной пылью
- •2.3. Загрязнение вод в процессе разработки месторождений
- •2.4. Мероприятия, снижающие загрязнение вод и ограничивающие изменение их режимов
- •2.5. Нарушение земной поверхности при разработке месторождений
- •2.6. Мероприятия, снижающие нарушения земной поверхности
- •2.7. Шум и вибрация при разработке месторождений
- •Глава 3 Нефтедобывающая промышленность
- •3.1. Добыча нефи и газа
- •3.2. Источники загрязнения окружающей среды
- •3.3. Выбросы основных технологических процессов
- •3.4. Защита атмосферы
- •3.5. Сточные воды при бурении, добыче, транспорте и хранении нефти и газа
- •3.6. Методы очистки сточных вод, образующихся при бурении и добыче нефти и газа
- •3.7. Загрязнение почвы нефтью
- •Глава 4 Нефтеперерабатывающая промышленность
- •4.1. Основные источники образования и состав сточных вод
- •4.2. Мероприятия по защите водных объектов
- •4.3. Очистка сточных вод
- •4.4. Выбросы в атмосферный воздух
- •4.5. Мероприятия по охране атмосферного воздуха
- •4.6. Обезвреживание и переработка шламов
- •Глава 5 Черная металлургия
- •5.1. Источники загрязнения атмосферы
- •5.2. Очистка газообразных выбросов
- •5.3. Характеристика сточных вод и их очистка
- •5.4. Отходы металлургического производства
- •Глава 6 машиностроение
- •6.1. Загрязнения атмосферы и производственные сточные воды
- •6.2. Загрязнение почвы отходами машиностроительных предприятий
- •6.3. Энергетическое загрязнение
- •6.4. Очистка выбросов в атмосферу
- •6.5. Очистка производственных сточных вод
- •6.6. Утилизация твердых отходов
- •6.7. Борьба с шумом и вибрацией
- •Глава 7 Транспорт
- •7.1. Общая характеристика воздействий транспорта на экосистемы
- •7.2. Шумовое воздействие транспорта
- •7.3. Специфика влияния видов транспорта на окружающую среду
- •7.4. Природоохранные мероприятия
- •Заключение
- •Литература
- •Содержание
- •Глава 1 Производство и окружающая среда 4
- •1.1. Система «Химическое производство – окружающая природная среда» 4
- •1.2. Общие положения о производственном процессе 9
- •1.3. Химико-технологическая система 15
- •Людмила Ивановна Бондалетова промышленная экология
1.3. Химико-технологическая система
1.3.1. Химико - технологический процесс как химико - технологическая система
Химическое производство ‑ совокупность машин, аппаратов и других устройств, связанных между собой материальными трубопроводами и паропроводами, линиями электрическими, транспортными и связи (для информации и управления). Все они взаимосвязаны и функционируют вместе, обеспечивая получение продукции и выполняя другие функции производства. Такой объект называется системой.
Система ‑ совокупность элементов и связей между ними, функционирующая как единое целое. Для исследования таких объектов, их свойств, особенностей функционирования развита теория систем.
В химическом производстве элементы ‑ это машины, аппараты и другие устройства; связи ‑ это материальные трубопроводы, паропроводы и проч., которые соединяют машины, аппараты. В элементах происходит превращение потоков (изменение их состояния ‑ разделение, смешение, сжатие, нагрев, химические превращения и т.д.). По связям потоки передаются из одного в другой. Это позволяет представить химическое производство как химико-технологическую систему.
Химико-технологическая система (ХТС) ‑ совокупность аппаратов, машин и других устройств (элементов) и материальных, тепловых, энергетических и других потоков (связей) между ними, функционирующая как единое целое и предназначенная для переработки исходных веществ (сырья) в продукты.
Реакционный узел также можно представить как систему ‑ совокупность реакторов, теплообменников, смесителей (элементов) и потоков между ними (связей), функционирующую как единое целое. По отношению к ХТС в целом эта подсистема ‑ часть большой системы.
В зависимости от цели исследования не все аппараты будут влиять на интересующие исследователей свойства ХТС. Если цель исследований ‑ определение производительности, выхода продукта и другие материальные показатели, то теплообменники, насосы и другое оборудование, не изменяющее состав потоков, можно не включать в ХТС. Если цель исследований - обеспечение производства энергией, то в систему включают энергетическое оборудование как ее элементы.
Химическое производство состоит из десятков и сотен разнородных аппаратов и устройств, связанных между собой разнообразными потоками. Исследовать его в целом при огромном многообразии его составных частей ‑ задача не только сложная, но и малоэффективная. Фактически исследование сложных ХТС сводится к изучению ее подсистем. Будем выделять подсистемы по двум признакам ‑ функциональному и масштабному.
Реакционный узел ‑ по масштабу малая подсистема во всем технологическом процессе переработки сырья в продукты. Энергетическая подсистема по масштабу охватывает все производство, но выполняет определенную функцию.
Функциональные подсистемы обеспечивают выполнение определенных функций производства и его функционирование в целом.
Технологическая подсистема ‑ часть производства, где осуществляется собственно переработка сырья в продукты химико-технологического процесса.
Энергетическая подсистема ‑ часть производства, служащая для обеспечения тепловой, силовой, электрической энергией химико - технологического процесса. В зависимости от вида энергии может быть представлена соответствующая подсистема.
Подсистема управления ‑ часть производства для получения информации о его функционировании и управления им. Обычно это автоматизированная система управления технологическим процессом (АСУТП).
Примерно так же функциональные подсистемы представлены в технической документации по производству. Совокупность функциональных подсистем образует состав ХТС.
Масштабные подсистемы как отдельные части химико - технологического процесса выполняют определенные функции в последовательности процессов переработки сырья в продукты.
Масштабные подсистемы ХТС также можно систематизировать в виде их иерархической последовательности ‑ иерархической структуры ХТС (рис. 7).
В структуре ХТС минимальный элемент ‑ отдельный аппарат (реактор, абсорбер, ректификационная колонна, насос и прочее). Это низший масштабный уровень. Несколько аппаратов, выполняющих вместе какое-то преобразование потока, элементы подсистемы следующего масштабного уровня (реакционный узел, система разделения многокомпонентной смеси и т. д.). Отделения или участки производства, например в производстве серной кислоты - отделения обжига серосодержащего сырья, очистки и осушки сернистого газа, контактное, абсорбционное, очистки отходящих газов образуют следующий масштабный уровень. Совокупность отделений, участков образует ХТС производства в целом. Описанное выделение подсистем условно.
Рис. 7. Иерархическая структура химико-технологической системы
Анализ ХТС заключается в получении сведений о состоянии ХТС, показателях ее эффективности и функционировании системы, а также о влиянии на эти данные химической схемы, структуры технологических связей, свойств и состояния элементов и подсистем, условий эксплуатации.
Фактически анализ ХТС ‑ получение технических (производительность, расходный коэффициент, выход продукта, интенсивность процесса, удельные капитальные затраты, качество продукта), экономических (себестоимость, производительность труда), эксплуатационных (надежность, безопасность функционирования), социальных (безвредность обслуживания, степень автоматизации и экологическая безопасность) показателей химико-технологического процесса.
Анализ ХТС осуществляется при разработке и проектировании нового химического производства, при эксплуатации действующего производства, для сравнения различных вариантов реализации процесса, при модернизации и реконструкции производства.
Первым шагом в анализе ХТС является определение ее состояния, т. е. расчет ХТС. Зная изменение состава и количества потоков, энергетические расходы, можно провести и другие расчеты ‑ эффективности использования сырья и энергии как технологических показателей, экономических показателей, некоторых социальных показателей, определяемых свойствами всех компонентов химико-технологического процесса, в том числе отходов производства. Эксплуатационные показатели определяются в основном из реакции системы на те или иные возмущения в процессе (изменение состава и количества сырья, энергетического обеспечения, состояния аппаратов, включая выход из строя некоторого оборудования, а также воздействия на режимы отдельных аппаратов и узлов). При этом необходимо учитывать, что ХТС обладает свойствами, не присущими отдельным ее элементам, что обусловлено взаимозависимостью их режимов.
Синтез или построение ХТС заключается в определении основных технологических операций и их последовательности, выборе аппаратов и установлении связей между ними, определении параметров технологических режимов отдельных аппаратов и системы в целом, обеспечивающих наилучшие условия функционирования ХТС.