
- •Л.И. Бондалетова Промышленная экология
- •Введение
- •Глава 1 Производство и окружающая среда
- •1.1. Система «Химическое производство – окружающая природная среда»
- •1.1.1. Система и ее основные свойства
- •1.1.2. Воздействие химического производства на окружающую природную среду
- •1.1.3. Основные факторы окружающей природной среды
- •1.2. Общие положения о производственном процессе
- •1.2.1. Химическое производство и химико-технологический процесс
- •1.2.2. Показатели эффективности химического производства и химико-технологического процесса
- •1.3. Химико-технологическая система
- •1.3.1. Химико - технологический процесс как химико - технологическая система
- •1.3.2. Сырьевые ресурсы химико-технологической системы
- •1.3.2.1. Характеристика и запасы сырья
- •1.3.2.2. Принципы обогащения сырья
- •1.3.2.3. Комплексное использование сырья
- •1.3.2.4. Воздух и вода как сырье химической промышленности
- •1.3.2.5. Промышленная водоподготовка
- •1.3.2.6. Водообеспечение промышленных предприятий
- •1.3.3. Энергетические ресурсы химико-технологической системы
- •1.3.3.1. Энергия в химическом производстве
- •1.3.3.2. Рациональное использование энергии
- •1.3.3.3. Вторичные энергетические ресурсы
- •1.3.4. Отходы производства
- •1.4. Взаимодействие производства и окружающей среды
- •Глава 2 Горно - добывающая промышленность
- •2.1. Загрязнение атмосферного воздуха при разработке месторождений
- •2.2. Мероприятия, снижающие негативные последствия локального загрязнения воздушной среды Снижение загрязнения атмосферы газообразными продуктами
- •Снижение загрязнения атмосферы минеральной пылью
- •Загрязнение атмосферы минеральной пылью
- •2.3. Загрязнение вод в процессе разработки месторождений
- •2.4. Мероприятия, снижающие загрязнение вод и ограничивающие изменение их режимов
- •2.5. Нарушение земной поверхности при разработке месторождений
- •2.6. Мероприятия, снижающие нарушения земной поверхности
- •2.7. Шум и вибрация при разработке месторождений
- •Глава 3 Нефтедобывающая промышленность
- •3.1. Добыча нефи и газа
- •3.2. Источники загрязнения окружающей среды
- •3.3. Выбросы основных технологических процессов
- •3.4. Защита атмосферы
- •3.5. Сточные воды при бурении, добыче, транспорте и хранении нефти и газа
- •3.6. Методы очистки сточных вод, образующихся при бурении и добыче нефти и газа
- •3.7. Загрязнение почвы нефтью
- •Глава 4 Нефтеперерабатывающая промышленность
- •4.1. Основные источники образования и состав сточных вод
- •4.2. Мероприятия по защите водных объектов
- •4.3. Очистка сточных вод
- •4.4. Выбросы в атмосферный воздух
- •4.5. Мероприятия по охране атмосферного воздуха
- •4.6. Обезвреживание и переработка шламов
- •Глава 5 Черная металлургия
- •5.1. Источники загрязнения атмосферы
- •5.2. Очистка газообразных выбросов
- •5.3. Характеристика сточных вод и их очистка
- •5.4. Отходы металлургического производства
- •Глава 6 машиностроение
- •6.1. Загрязнения атмосферы и производственные сточные воды
- •6.2. Загрязнение почвы отходами машиностроительных предприятий
- •6.3. Энергетическое загрязнение
- •6.4. Очистка выбросов в атмосферу
- •6.5. Очистка производственных сточных вод
- •6.6. Утилизация твердых отходов
- •6.7. Борьба с шумом и вибрацией
- •Глава 7 Транспорт
- •7.1. Общая характеристика воздействий транспорта на экосистемы
- •7.2. Шумовое воздействие транспорта
- •7.3. Специфика влияния видов транспорта на окружающую среду
- •7.4. Природоохранные мероприятия
- •Заключение
- •Литература
- •Содержание
- •Глава 1 Производство и окружающая среда 4
- •1.1. Система «Химическое производство – окружающая природная среда» 4
- •1.2. Общие положения о производственном процессе 9
- •1.3. Химико-технологическая система 15
- •Людмила Ивановна Бондалетова промышленная экология
1.3.3. Энергетические ресурсы химико-технологической системы
1.3.3.1. Энергия в химическом производстве
В химическом производстве осуществляются процессы, связанные либо с выделением, либо с затратой, либо со взаимными превращениями энергии. Энергия затрачивается не только непосредственно на проведение химических реакций, но и на транспортировку материалов, дробление, фильтрацию, сжатие газов и т. д.
Энергоемкость производства - расход энергии на получение единицы продукта – один из важнейших показателей эффективности производства. Имеются производства, отличающиеся высокой энергоемкостью, и производства с относительно небольшим потреблением энергии. Так, на производство 1 т алюминия необходимо 18 000-20 000 кВтч энергии, а на производство минеральных удобрений (суперфосфата) – 2-10 кВтч. Энергию выражают в различных единицах: кДж, кВт.ч, в том числе в единицах условного топлива (1 кг твердого топлива или 1 м3 газообразного с теплотой сгорания 29,3 МДж).
Несмотря на наличие производств, потребляющих небольшие количества энергии на тонну продукции, крупные масштабы современных химических комбинатов и заводов обусловливают возрастающую потребность во всех видах энергии.
Виды энергии
Наиболее широкое практическое применение в промышленности имеют электрическая, ядерная, тепловая, химическая и др. виды энергии. Вид применяемой энергии зависит от технологического процесса.
Электрическая энергия ‑ наиболее универсальный вид энергии. Источником ее является энергия воды на ГЭС и превращение тепловой энергии, полученной в результате сгорания топлива (ТЭЦ) или в результате ядерных реакций (АЭС), в механическую, а затем механической в электрическую. Электроэнергия на химических предприятиях используется для осуществления электрохимических (электролиз растворов и расплавов), электротермических (плавление, нагревание, синтезы при высоких температурах и т. д.), электромагнитных процессов. В промышленности нашли применение процессы, связанные с использованием электростатических явлений (осаждение пылей и туманов, электрокрекинг углеводородов и др.), электронноионные явления, применяемые для контроля и автоматизации химических производств. Особенно широко в химической промышленности используется превращение электрической энергии в механическую, которая необходима главным образом для физических операций ‑ дробления, измельчения, смешения, центрифугирования, работы вентиляторов, компрессоров, насосов и пр.
Тепловая энергия в химической промышленности применяется, во-первых, для осуществления разнообразнейших физических процессов, не сопровождающихся химическими реакциями ‑ нагрева, плавления, сушки, выпарки, дистилляции и т. п. Кроме этого, большое количество тепловой энергии затрачивается на нагрев реагентов для проведения эндотермических химико-технологических процессов.
Внутриядерная энергия, выделяемая при различных превращениях атомных ядер или при синтезе ядер водорода в ядра гелия, используется для производства электрической энергии на атомных электростанциях. Большое распространение получают радиационно-химические процессы, в которых радиоактивные излучения используются для осуществления химических реакций.
Химическая энергия, выделяющаяся в результате экзотермических химических реакций, служит ценным источником тепла для обогрева реагентов, используемых для проведения реакции. Химическая энергия применяется в гальванических элементах и аккумуляторах, где она преобразуется в электрическую.
Световая энергия используется для осуществления различных фотохимических реакций: синтеза хлористого водорода из элементов, галоидирования органических соединений и других процессов. Фотоэлектрические явления, в которых происходит превращение световой энергии в электрическую, нашли применение для автоматического контроля и управления технологическими процессами.
Источники энергии, используемой на промышленных предприятиях, могут быть различными. Они могут оцениваться по характеру энергетических ресурсов, энергетической ценности, запасам.
По характеру энергетические ресурсы делятся на невозобновляемые и возобновляемые. К невозобновляемым источникам энергии относятся уголь, нефть, сланцы, природный газ, которые после их использования не могут быть воспроизведены. Гидроэнергия, растительное топливо, энергия ветра, солнечная энергия относятся к непрерывно возобновляемым источникам энергии.
Энергетическая ценность отдельных источников энергии определяется количеством энергии, которое можно получить при их использовании. Для топлив, например, энергетическая ценность характеризуется количеством квтч, получаемых при полном использовании теплоты сгорания одного килограмма или кубического метра данного топлива, например энергетическая ценность каменного угля составляет 8,0 кВтч/кг, а природного газа – 10,6 кВтч/м3.
Практическое использование энергетических ресурсов определяется прежде всего запасами, а также их географическим положением, доступностью использования, возможностью трансформации энергии и передачи ее на расстояния и рядом других факторов.
Размещение химических предприятий, отличающихся большими масштабами потребления энергии, зависит от наличия дешевого топлива и электрической энергии. В этой связи следует отметить роль местных видов топлива, которые, как правило, обходятся дешевле дальнепривозных. Однако в некоторых случаях использование транспортируемого на дальние расстояния по трубопроводам газа более рентабельно, чем использование местных топлив.