Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекции по МСПИ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.71 Mб
Скачать

10.2. Линейные коды цсп

10.2.1. Линейные коды с сохранением тактовой частоты

Существует несколько основных вариантов преобразования двоичного RZ или ЛТ сигнала в линейный код:

1) без изменения тактовой частоты двоично­го сигнала;

2) с увеличением .тактовой частоты;

3) с уменьшением тактовой час­тоты линейного сигнала.

Первый вариант преобразования предполагает, что частота следования от­дельных символов линейного кода не изменяется и равна исходной частоте следо­вания ft отдельных символов ДС. Здесь возможны два способа преобразования. Первый способ— с активной паузой (рис. 15.6), при котором передача нулей в ис­ходном видеосигнале заменяется на передачу посылок отрицательной полярности. Такой ЛС называется двоично-симметричным (ДСС). Поскольку в среднем число нулей и единиц в исходном сигнале одинаково, то постоянная составляющая преобразованного сигнала равна нулю, однако за счет возможности «скопле­ния» нулей (или единиц) постоянная составляющая начинает изменяться во времени, и межсимвольные искажения второго рода не устраняются.

На практике часто применяют второй способ преобразования ДС, когда униполярный сигнал в коде RZ или NRZ преобразуется в квазитроичный код, или код ЧПИ (сигнал с чередованием полярности импульсов). При таком пре­образовании «0» передается без изменения, а «1» передается так, что каждая следующая единица меняет свой знак на противоположный. Этот способ легко реализуем на практике, он устраняет межсимвольные искажения второго рода, не требуя расширения полосы пропускания в области верхних частот.

Одна из возможных структурных схем преобразования двоичного сигнала в квазитроичный приведена на рис. 15.7. Осциллограммы сигналов в контроль­ных точках представлены на рис. 15.8. Цифровой сигнал в двоичной форме (рис. 15.8, а) поступает на сумматор по модулю 2. На другой вход сумматора поступает сигнал, прошедший через линию задержки 1 и задержанный на один тактовый интервал (рис. 15.8, в). Выходной сигнал сумматора (рис. 15.8, 6) поступает на вычитающее устройство 4. Этот же сиг­нал, задержанный на тактовый интервал (рис. 15.8, г), поступает на Другой вход блока 4. На выходе вычитающего устройства получа­ем сигнал в квазитроичном коде

(рис.15.8,д).

Достоинством квазитроичного кода является то, что он не имеет постоянной составляю щей и легко преобразуется в исходный дво­ичный код путем его пропускания через бе­зынерционный двухполупериодный выпря­митель.

Кроме того, он удобен тем, что в нем легко обнаруживаются ошибочные символы по признаку нарушения чередования поляр­ности импульсов.

Схема преобразователя квазитроичного кода, изображенного на рис. 15.7, очень сложная. На входы логической ячейки И1 поступают входной циф­ровой сигнал (рис. 15.11,а) и стробирующие импульсы (рис. 15.11, б). Далее сигнал (рис. 15.11,в) поступает на вход триггера. С прямого (рис. 15.11, г) и инверсного (рис. 15.11,д) выходов триггера сигналы поступают на входы логических ячеек ИЗ,И4, куда поступает также сигнал с выхода схемы совпадения И1. На выходе логических схем 3, 4 будут вырабатываться определенные импуль сы (рис. 15.11, е, ж). Формирователи импульсов 5,6 укорачивают импульсы по длительности до и подают их на вычитающее устройство 7(ВУ), на выходе которого формируется полный квазитроичный сигнал (рис. 15.11, з)

Сигнал с ЧПИ обладает одним существенным недостатком — при появле­нии в нем длинных серий пробелов (нулей) возможен сбой системы тактовой синхронизации. Чтобы этого не происходило, следует ограничить в линейном сигнале, передаваемом в коде ЧПИ, число подряд следующих нулей. Эта задача была решена созданием кодов с высокой плотностью единиц ; такой код еще называют модифицированным квазитроичным кодом (МЧПИ). Здесь — некоторое максимально допустимое число следующих подряд нулей после предыдущей единицы в исходном ДС. Обычно принимают или 3, что соответствует кодам КВП-2 и КВП-3 (или HDB-2, -3 в англоязычной терминоло­гии). Если в реальном «пакете» нулей их число будет меньше , то линейное ко­дирование осуществляется по коду ЧПИ, т.е. нули не преобразуются, а каждая единица имеет длительность в половину тактового интервала , причем ее по­лярность противоположна полярности предыдущей единицы.

Если в «пакете» нулей их число больше , то каждый пакет из нулей заменяется сигналами 000 Vили 500 V (для КВП-3).

Полярности вводимых импульсов В и К выбираются так, чтобы на интерва­ле в тактов происходило одно нарушение правила чередования поляр­ности. По этому нарушению на приемной стороне оконечной станции при пре­образовании ЛС в ДС принимают решение об истинном содержании пакета. При выборе конкретного вида сигнала (000 V или В00V) исходят из следующих условий: полярность импульса В всегда противоположна полярности предшес­твующего импульса; если между двумя соседними паузами в двоичном сигнале, имеющими число нулей больше, чем q+1 = 3 + 1=4, насчитывается четное число единиц, то заполнение второй паузы начинается с сигнала В00V; если число единиц между двумя вышеупомянутыми паузами нечетное, то заполне­ние второй паузы начинается с сигнала 000V.

В процессе заполнения очень длинной паузы пакет из (q + 1) нулей заменяется комбинацией BOO V, если предшествующее число «пакетов» в паузе нечетное; «пакет» из (q + 1) нулей за­меняется комбинацией 000V, если предшествующее число «пакетов» в паузе четное (или нуль). Пример использования алгоритма формирования кода КВП-2 и КВП-3 приведен на рис. 15.12.

Линейный сигнал в коде МЧПИ (HDB), передаваемый трехуровневым ко­дом с той же тактовой частотой, что и исходный двоичный сигнал, широко ис­пользуется в первичных, вторичных и третичных ЦСП (ИКМ-30, ИКМ-120, ИКМ-480), работающих по металлическим кабелям (симметричным и коакси­альным). Кроме того, он применяется и как «стыковой» сигнал в оконечной аппаратуре для соединения разных иерархических структур.

Возможность исключения длинных пакетов нулей или единиц обеспечива­ет также третий способ преобразования ДС в ЛС с сохранением тактовой час­тоты и числа разрешенных уровней, называемый скремблированием. При этом ДС подвергается операции перемножения с некоторой, известной заранее псевдослучайной двоичной последовательностью (ПСП): ЛС = ДС + ПСП. На приемной стороне выполняется обратная операция: ДС = ЛС + ПСП (знак + здесь и далее означает сложение по модулю 2). Для правильного восстановления исходного сигнала псевдослучайные последовательности, вырабатываемые на приемной и передающей сторонах, должны быть засинхронизированы.

Для того чтобы сделать операцию дескремблирования самосинхронизирую- щейся, применяют решение, приведенное на рис. 15.13. Здесь скремблер 1 содержит сумматор по модулю 2 и формирователь псевдослучайной последовательности (ФПСП) 3. Дескремблер 4 содержит аналогичные блоки (рис. 15.13, а).

Для того чтобы сделать операцию дескремблирования самосинхро- низирующейся, т.е. не требующей формирования специального сигнала синхронизации на пе­редающей стороне и его поиска на приемной стороне, применяют решение, приведенное на рис. 15.13. Здесь скремблер 1 содержит сумматор по модулю 2 и формирователь псевдослучайной последовательности (ФПСП) 3. Дескремблер 4 содержит аналогичные блоки (рис. 15.13, а).

Формирователь двоичной ПСП включает в себя n-разрядный регистр сдвига (триггеры , управляемый импульсами тактовой частоты ИУ от генераторного оборудования, а так­же некоторое количество сумматоров по модулю 2, соединенных с выходами соответствующих триггеров (рис. 15.13, б). Элемент на схеме отражает наличие ) или отсутствие связи триггера 7} со схемой сложения.

Скремблированный сигнал S представляет собой результат потактового сложения по модулю 2 исходного двоичного сигнала D и псевдослучайного R: S= Дескремблированный сигнал равен соответственно При отсутствии ошибок в канале связи, когда , имеем ,=D. Параметры ФПСП определяются видом алгебраического полинома, опи­сывающего структуру ПСП, ,.С увеличением числа п растет период ПСП, равный , и соответственно сдвигается влево «провал» в спектре скремблированного сигнала S (см. штриховую функцию на рис. 15.5, б). С увеличением числа k ненулевых коэффициентов Cj этот «провал» углубляется и расширяется по частоте, однако при этом в случае появления в канале передачи одиночных ошибок дескремблер «размножает» их в (k + 1) раз. Практическое применение получили ФПСП с компромиссными параметрами[23]: (т.е. «=15, ) и ( = 10, = 1; k = 3). Отметим, что линейный сигнал, полученный путем скремблирования (см. рис. 15.13, а), остается униполярным и имеет постоянную составляющую, которая хотя и не равна 0, но изменя­ется в очень малых пределах. Это позволяет «потерять» ее в линейном тракте (из-за разделительных элементов), а затем «восстановить» в регенераторе, не искажая форму импульсов.