Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Целая книгаТОПР.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.63 Mб
Скачать

Структурно-геоморфологические исследования

Структурно-геоморфологические исследования проводятся для предварительной оценки новейшей региональной тектоники нефтегазоносных бассейнов и выявления крупных локальных структур на слабоизученных закрытых территориях.

В качестве исходных материалов используются топографические карты масштаба 1:50000-1:500000, материалы дистанционных съемок (космические снимки локального и детального уровней генерализации), аэрофотоматериалы, среднемасштабные геологические карты, а также все имеющиеся материалы геофизических исследований и бурения скважин.

Основным итоговым документом структурно-геоморфологических исследований является структурно-геоморфологическая карта масштаба съемки, содержащая выделенные новейшие структурные элементы с подразделением их по достоверности и с показом результатов их сопоставления с данными геолого-геофизических работ.

Важнейшим условием применимости метода является соответствие новейшего структурного плана структурному плану по более глубоким перспективным горизонтам.

Геохимические и битуминологические исследования

Геохимические и битуминологические исследо­вания (изучение битумов, органического вещества и общей геологической обстановки) проводятся с целью установления общей геохимический обстановки в недрах, благоприятной или неблагоприятной для образования и сохранения залежей и определения их прямых признаков в породах и в водах в виде растворенных органических веществ и битумов.

Для решения этих задач используются пробы воды, керн скважин, данные газового каротажа и материалы, получаемые в шурфах, картировочных скважинах и обнажениях.

При региональных геохимических исследованиях проводится изучение следующих компонентов, характеризующих геохимическую среду, наблюдаемую в районе осадочных отложений:

распространение в породах и в водах органического вещества и битумов;

современное окислительно-восстановительное состояние пород путем непосредственного замера ОВП;

водно-растворимый и солевой комплекс для определения геохимического типа бассейна седиментации;

тип окислительно-восстановительной обстановки на основании изучения аутигенно-минералогических форм железа и серы;

в отдельных случаях изучаются растворенные в водах газы, особенно метан, тяжелые углеводороды, сероводород, углекислота, аргон и гелий.

Битумно-люминесцентная съемка. Этот вид иссле­дования, разработанный в 1954 г. В. Н. Флоровской, позволяет в поле­вых условиях определять с высокой точностью (до 10-5%) содержание и состав битумов в почвах, породах, в кернах скважин по цвету спектров и интенсивности люминесценции, которые фиксируются при облучении ультрафиолетовыми лучами образцов пород. Битумно-люминесцентная съемка позволяет устанавливать свиты с повышенным содержанием би­тумов.

Гидрогеологические исследования

Теоретические основы и методы поисков и разведки скоплений нефти и газа. Под редакцией А.А. Бакирова. Учебник для вузов. Изд. 2-е, перераб. и доп. М., Высшая школа, 1976.

Гидрогеологические исследования и наблюдения являются обязательным элементом в комплексе геолого-съемочных работ и должны дать характеристику солевого состава подземных вод территории съемки с целью оценки перспектив нефтегазоносности по гидрогеологическим показателям.

Гидрогеологические и гидрохимические методы поисков и разведки скоплений нефти и газа основаны на изучении региональных и локаль­ных особенностей гидродинамических систем и состава подземных вод, с эволюцией которых в недрах тесно связано формирование и разрушение залежей углеводородов.

Исследования производятся путем опробования водоносных горизон­тов в различных скважинах, а также водных источников, колодцев и др. При этом изучаются: 1) гидродинамические условия водоносного бас­сейна; 2) химический состав вод (содержание солей и органических ве­ществ; состав и давление насыщения растворенных газов); 3) геотерми­ческие условия; 4) палеогидрогеологические условия.

В обязательный комплекс гидрогеологических исследований входит и определение растворенных в водах газов и органических веществ.

Для решения гидрогеологических задач должно быть проведено обследование всех естественных и искусственных водопунктов (родников, колодцев, скважин).

В районах, где проектом предусматривается бурение картировочных скважин, часть из них подвергается специальному гидрогеологическому опробованию.

Особенности гидродинамики вод раскрываются определением уста­новившихся статических (пьезометрических) уровней или пластового давления при испытании водоносных горизонтов в скважинах и пост­роением карт гидроизопьез отдельных водоносных горизонтов и комп­лексов. По картам гидроизопьез определяются гидравлические уклоны и направление движения пластовых вод. При движении пластовых вод в область разгрузки (зоны меньших пластовых давлений) наблюдается наклон газоводяных и водонефтяных контактов и смещение залежей в пласте (рис. 2.2.1).

Рис. 2.2.1. Смещение контуров газоносности хадумских залежей под воздействием пьезометрических напоров в Центральном Ставрополье (по В. П. Савченко и др.):

1—изогипсы по кровле хадумского горизонта; 2контуры газоносности; 3гидроизопьезы (по В. Н. Корценштейну с изменениями Л. С. Темина)

Величины наклонов контактов зависят от степени разности пьезо­метрических напоров, разности удельных весов воды, нефти и газа (фор­мула В. П. Савченко). Условием сохранения залежей в структурной ловушке является превышение углов падения пластов на крыльях под­нятий над углом наклона водонефтяного или газонефтяного контакта. Например, при гидравлических уклонах 0,001 и 0,01, удельных весах воды 1, нефти 0,8 и газа 0,001 газовая залежь сохранится при углах па­дения крыльев структуры соответственно 0°03/, 0°30/, а нефтяная за­лежь—при углах падения 0°15/ и 2°30/ (А. А. Карцев, 1963).

Карты гидроизопьез в отдельных случаях могут быть использованы для поисков локальных структур, зон нарушений, литологических экра­нов и др. В ряде районов на картах они характеризуются сгущением или разрежением гидроизопьез («пьезометрические минимумы» или «пьезо­метрические максимумы»). Сгущением гидроизопьез выделяются некото­рые скопления нефти и газа, например Северо-Ставродюльская газовая залежь в хадумском горизонте. К пьезометрическим минимумам приуро­чены залежи Каганского района Бухаро-Хивинской нефтегазоносной области (В. А. Кудряков, 1960). Эта приуроченность обусловлена связью залежей с очагами разгрузки («переточные минимумы») или литологическими и тектоническими экранами («преградные минимумы»).

В процессе гидрохимических исследований по данным детального химического состава проб вод строятся карты, на которых выделяются следующие аномалии: общей минерализации (М); типов вод; значений основных генетических коэффициентов Na'/Cl', Cl/Br; содержания и рас­пространения в водах отдельных минеральных ионов и солей (кальция, магния, стронция, иода, брома, фтора, радия, сульфатов); состава и ко­личества растворенных газов (гомологов метана, углекислоты, серово­дорода, гелия, аргона); органических веществ (нафтенат-ионов, жирных анионов, фенолов, аммония, органического углерода, органического азо­та Nобщ). При этом учитываются: подвижные формы азота (Nподв)— соединения азота, отщепляемые в щелочной среде; устойчивые формы азота (Nуст) — соединения азота, разлагаемые серной кислотой; перманганатная окисляемость (О2перм), дающая представление о количестве легко окисляющихся органических веществ; иодатная окисляемость (О2иод), характеризующая сумму окисляющих компонентов.

При интерпретации данных исследований можно использовать соот­ношения перечисленных выше компонентов: Ca/Sr, Sr/M, SO4"/ Cl, Cl/Br; O22перм, О2/Copr, Сорг/Nобщ, Nycт/Noбщ и др.

Возможность выделения аномалийных зон по солевому составу, комплексу органических веществ и растворенных газов в составе глубин­ных вод определяется специфичностью их химического состава и концентраций благодаря генетической взаимосвязи с залежами углеводо­родов. Для каждого нефтегазоносного района должны быть подобраны комплексы гидрохимических показателей, свойственных данному району.

Среди подземных вод нефтегазоносных районов преобладают два типа: хлоркальциевый и гидрокарбонатно-натриевый (по классифика­ции В. А. Сулина). Появление в зоне активного водообмена вод повы­шенной минерализации, вод хлормагниевого типа обычно свидетельст­вует о подтоке глубинных высокоминерализованных вод хлоркальциевого типа и смешении их с гидрокарбонатно-натриевыми или сульфатно-натриевыми водами дневной поверхности. По данным Е. А. Барс (1964), высокие числовые значения отношений O22перм, О2/Copr говорят об увеличении в водах концентрации высоковосстановленных органических соединений нефтяного ряда. Для поверхностных вод это отношение близ­ко к единице. Высокие концентрации иода, брома (при очень низком хлорбромном коэффициенте), биогенного азота, аммония, фенолов, вы­сокая относительная хлоридность и высокий гелий - аргоновый коэф­фициент, бессульфатность, отсутствие углекислоты и сероводорода в водах обычно являются показателями благоприятных условий сохране­ния газонефтяных залежей в недрах.

На рис. 2.2.2 показан пример гидрохимической аномалии по минера­лизации, выявленной в процессе структурно-картировочного бурения в Арлано-Дюртюлинской зоне Башкирии. Указанной аномалии соответствуют крупные месторождения нефти в нижнем карбоне (В. А. Кротова, 1963). Часто на резкие изменения минерализации подземных вод ока­зывают экранирующее влияние разломы, например Бухарский разлом Бухаро-Каршинской нефтегазоносной области (М. Г. Лубянская, 1970).

При оценке нефтегазоносности выявленных ловушек углеводородов большую помощь может оказать изучение углеводородного состава и упругости газов, растворенных в подземных водах. Выделение газа из воды в свободную фазу и формирование залежи, если существует ло­вушка, обычно происходят при превышении давления насыщения раст­воренных газов над гидростатическим давлением пластовых вод.

Рис. 2.2.2. Гидрохимические аномалии нижней перми в низовье р. Белой (по В. А. Кротовой, 1963)

Аномалия по минерализации в милли-эквивалентах на 100 г: 1) > 500; 2) 500—300; 3) 300—100; 4) <100

К зонам относительно высокой упругости растворенных газов и по­вышенного содержания тяжелых углеводородов в ряде районов приуро­чены газовые залежи, например Северо-Ставропольское, Пелагиадинское .в хадумском горизонте (рис. 2.2.3); газовые залежи ;в юрском ба-зальном горизонте Березовского района в Западной Сибири и другие залежи. Однако существует и обратная картина. Так установлено, что уникальные газовые залежи севера Западной Сибири располагаются в зоне существенного дефицита упругости газов, растворенных в воде (Н. М. Кругликов, 1965; Ю. С. Шилов, 1969), достигающего на Тазовской, Уренгойской и Губкинской площадях величин 92, 82, 22 кгс/см2.

Большое значение для оценки перспектив нефтегазоносности иссле­дуемых районов имеют палеогидрогеологические исследова­ния. Эти исследования позволяют выяснить гидрогеологическую исто­рию, условия образования подземных вод, процессы формирования их состава и на этой основе изучить условия формирования и разрушения скоплений нефти и газа.

В основе палеогидрогеологических исследований лежит разделение гидрогеологической истории изучаемого района на гидрогеологические циклы и этапы во времени и пространстве. Гидрогеологический цикл в пределах любой территории начинается первоначально тектоническим опусканием и трансгрессией морского бассейна, в результате чего про­исходит осадконакопление и образование седиментационных вод. При регрессии морского бассейна, происходящей в фазы развития движений воздымания, водоносные горизонты выходят на поверхность и начинает­ся их денудация. На этом заканчивается седиментационный и начинает­ся инфильтрационный этап гидрогеологического цикла, на протяжении которого происходит замена седиментационных вод инфильтрационными (А. А. Карцев, 1961). Заканчивается гидрогеологический цикл новой морской трансгрессией, в результате которой происходит перекрытие выходов водоносных пород и прекращается инфильтрация.

В течение последующих гидрогеологических циклов состав подзем­ных вод, сформировавшихся на ранних гидрогеологических циклах, мо­жет изменяться. При хорошей изоляции более древних гидрогеологиче­ских комплексов от денудации и инфильтрации метеорных вод в резуль­тате возобновления выжимания из глинистых пород в коллекторы инфильтрационные воды, попавшие в водоносные породы в предыдущих циклах, будут замещаться седиментационными водами.

Рис. 2.2.3. Схема изменения общей упругости раство­ренных газов в водах хадумского горизонта (пи В. Н. Корценштейну):

1— наиболее важные опытные скважины; 2 изолинии об­щей упругости (ата); 3 газовые залежи

Наиболее благоприятные палеогидрогеологические условия для формирования и сохранения скоплений нефти и газа будут приурочены к отрезкам геологической истории, характеризующимся большой дли­тельностью седиментационных этапов и большим числом циклов седиментационного водообмена при небольших скоростях движения пластовых вод. Наоборот, при большом количестве циклов инфильтрационного водообмена и большой их длительности исследуемые районы по палеогидрогеологическим показателям должны считаться менее перспективными для нефтегазопоисковых работ.

Большое значение при воссоздании палеогидрогеологических усло­вий и древней гидродинамики имеет знание состава древних вод, а так­же направлений и скорости их движения. Методики гидрогеологических и гидродинамических исследований при нефтегазопоисковых работах подробно рассмотрены в работах Карцева А. А., Вагина С. Б., Шугрина В. П., Табасаранского 3. А., Корценштейна В. Н. и др.

Гидрогазобактериологические и газобактериологическне почвенные исследования

Гидрогазобактериологические и почвенные газобактериологические исследования проводятся с целью выявления участков или структур, характеризующихся повышенными концентрациями углеводородных газов и бактерий в грунтовых водах, а также в водах верхних от поверхности водоносных горизонтов и в породах, выходящих на дневную поверхность.

Газобактериальная съемка как дополнительный метод исследования проводится в слаборазбуренных районах, нефтегазоносность которых изучена недостаточно.

В процессе газобактериальной съемки проводится отбор проб воды и пород для анализа растворенных и почвенных газов, химического состава вод, бактерий и растворенных битумов.

По результатам комплексных геологических исследований составляются карты (геологические, как правило, по двум поверхностям - современной и древней; четвертичных отложений, геоморфологическая, геотектоническая, структурная, гидрогеологическая, полезных ис­копаемых) с обязательней запиской к каждой из них.

Геотермические методы исследований

Геотермические исследования проводятся для решения задач, свя­занных с изучением термического режима земной коры, условий мигра­ции в ней углеводородов, формирования подземных вод и т. д. Эти ис­следования могут применяться в процессе как региональных исследова­ний, так и детальных геолого-поисковых работ.

Температурные наблюдения в скважинах проводят, как правило, в процессе опробования отдельных водоносных горизонтов и при электрокаротажных работах. Полученные данные служат исходным материалом для построения геотермических карт и профилей. Геотермические карты могут быть трех видов: изотерм, термоизогипс и равных геотермических градиентов (ступеней).

Использование геотермии для структурного картирования основано на появлении геотермических повышенных аномалий над очагами раз­грузки водоносных комплексов, которыми обычно являются локальные структуры и зоны нарушений. Геотермические исследования должны проводиться в комплексе с другими видами исследований.

Региональные геотермические карты, освещая распределение глу­бинных температур на больших площадях, дают возможность вырабо­тать критерии для сравнительной оценки температурных условий в пре­делах отдельных районов, характеризующихся различной геотермиче­ской обстановкой. При интерпретации таких карт следует в первую очередь учитывать связь геотермии с геолого-структурным планом иссле­дуемой территории. Например, на геотермической карте Русской плат­формы отчетливо видна область регионального охлаждения недр, соот­ветствующая участкам приподнятого залегания кристаллического фун­дамента в пределах Балтийского и Украинского щитов и Воронежского массива.

Данные геотермии хорошо характеризуют области питания и сноса, режим и динамику подземных вод артезианских бассейнов и другие гидрогеологические особенности исследуемых территорий. Региональные геотермические исследования на обширных площадях артезианских бас­сейнов позволяют изучать условия формирования и динамику подзем­ных вод, судить о литологических и структурно-тектонических особенно­стях бассейнов и определять возможные глубины синклинальных проги­бов, находящихся между областями питания и разгрузки.

Большое практическое значение имеет изучение глубинной текто­ники по данным геотермических исследований. В отечественной и зару­бежной практике известны многочисленные примеры выявления по этим данным погребенных структурных поднятий. Так, по карте равных гео­термических ступеней в майкопских отложениях при сопоставлении с изогипсами кровли палеозоя Центрального Предкавказья установлено, что изолинии геотермической ступени в майкопских отложениях повто­ряют очертания изогипс палеозойского фундамента и отчетливо отра­жают основные черты Ставропольского сводового поднятия.

На детальных геотермических картах местами могут оконтуриваться структуры. Это обусловлено тем, что обычно в приподнятых зонах наблюдается повышение плотности теплового потока и величины геотер­мического градиента по сравнению с опущенными районами.

Дьяконов Д.И. показал, что по данным геотермических исследова­ний мелких скважин можно выявлять и изучать антиклинальные склад­ки, соляно-купольные поднятия и погребенные выступы карбонатных, ме­таморфических и магматических пород, изучать закономерные связи между строением рельефа фундамента и платформенного чехла и опре­делять принадлежность исследуемого района к тем или иным крупным структурным элементам.