- •Введение
- •Принципы цифровых технологий передачи сигналов
- •1.1. Особеннoсти канала передачи
- •Импульсно-кодовая модуляция (икм)
- •1.3. Методы мультиплексирования потоков данных
- •Временное мультиплексирование
- •1.3.3. Временное мультиплексирование двоичных потоков данных
- •1.4. Кодирование цифровых данных в икм системах
- •Практические методы формирования цифровой последовательности
- •Методы двоичного кодирования и ошибки квантования
- •1.4.3. Параметры стандартных икм систем
- •Цифровые иерархии скоростей передачи
- •Схемы плезиохронной цифровой иерархии – рdн
- •Особенности плезиохронной цифровой иерархии
- •Недостатки плезиохронной цифровой иерархии
- •Синхронные иерархии sonet/sdн
- •2. Синхронные цифровые сети на основе технологии sdн
- •2.1. Синхронные цифровые сети
- •2.2. Особенности построения синхронной иерархии sdн
- •Общие особенности построения синхронной иерархии
- •Топология сетей sdh
- •2.4.1. Топология "точка-точка"
- •2.4.2. Топология "последовательная линейная цепь"
- •2.4.3. Топология "звезда", реализующая функцию концентратора
- •2.4.4. Топология "кольцо"
- •Функциональные методы защиты синхронных потоков
- •А) путём исключения повреждённого участка б) путём организации обходного пути
- •Архитектура сетей sdн
- •2.6.1. Радиально-кольцевая архитектура
- •2.6.2. Архитектура типа "кольцо-кольцо"
- •2.6.3. Линейная архитектура для сети большой протяженности
- •2.6.4. Архитектура разветвленной сети общего вида
- •2.9. Интерфейс g.703
- •2.9.1. Физические и электрические характеристики интерфейса g.703
- •2.9.2 Реализация интерфейса g.703
- •4.2. Терминология цифровых сетей
- •4.2.1. Истоки появления новой терминологии
- •4.2.2. Предложения по выбору терминологии в технологиях рdн и sdн
- •Список сокращений
- •Латинские сокращения
Недостатки плезиохронной цифровой иерархии
Суть основных недостатков РDН в том, что добавление выравнивающих бит делает невозможным идентификацию и вывод, например, потока 64 кбит/с или 2 М, "зашитого" в поток" 140 М, без полного демультиплексирования или "расшивки" этого потока и удаления выравнивающих бит, Одно дело "гнать" поток междугородных или международных телефонных разговоров от одного телефонного узла к другому "сшивая" и "расшивая" их достаточно редко. Другое дело связать несколько банков и/или их отделений с помощью РDН сети. В последнем случае часто приходится либо выводить поток 64 кбит/с или 2 М из потока 140 М, чтобы завести его, например, в отделения банка, либо наоборот выводить поток 64 кбит/с или 2 М из банка для ввода его обратно в поток 140 М. Осуществляя такой ввод/вывод, приходится проводить достаточно сложную операцию трехуровневого демультиплексирования ('расшивания") РDН сигнала с удалением/добавлением выравнивающих (на всех трех уровнях) бит и его последующего трехуровневого мультиплексирования ("сшивания") с добавлением новых выравнивающих бит.
Схема такой операции для одного пользователя (с потоком 2М) показана на рис. 1.12. При наличии многих пользователей, требующих ввода/вывода исходных (например, 2 М) потоков, для аппаратурной реализации сети требуется чрезмерно большое количество мультиплексоров, в результате эксплуатация сети становится экономически невыгодной.
Рис.1.12. Операция вывода / ввода потока пользователя 2 Мбит/с в поток 140 Мбит/с по схеме РDН
Другое узкое место технологии РDН слабые возможности в организации служебных каналов для целей контроля и управления потоком в сети и практически полное отсутствие средств маршрутизации низовых мультиплексированных потоков, что крайне важно для использования в сетях передачи данных. Обычно для целей последующей идентификации и сигнализации поток разбивается на группы тайм-слотов, или фреймы, из которых затем компонуются группы из нескольких фреймов или мультифреймы. Последние, давая возможность идентифицировать на приемной стороне отдельные фреймы, снабжаются дополнительными битами циклических помехоустойчивых кодов и используемых систем сигнализации. Однако эти средства достаточно слабы, особенно на первых двух уровнях АС и ЯС иерархий. Например, мультифреймы Т1 позволяют формировать кроме сигнала синхронизации, кодовую группу кода СRС-6 (6 бит контрольного кода на 4632 бита 24 фрейма) и служебный канал данных со скоростью 4 кбит/с, используемый, в частности, для посылки сигнала потери синхронизации фрейма LFА. Мультифреймы Т2 дают возможность формировать служебный канал той же емкости 4 кбит/с и кодовую группу кода СRС-5 (5 бит контрольного кода на 3156 бит).
Рекомендация ITU-Т G.703 вообще не предусматривает необходимые для нормальной маршрутизации заголовки. В связи с отсутствием специальных средств маршрутизации, при формировании РDН фреймов и мультифреймов увеличивается (при возрастании числа мультиплексирований и переключений потоков при маршрутизации) возможность ошибки в отслеживании "истории" текущих переключений, а значит увеличивается и возможность "потерять" сведения не только о текущем переключении, но и о его "истории" в целом, что приводит к нарушению схемы маршрутизации всего трафика.
Так, казалось бы существенное достоинство метода небольшая "перегруженность заголовками" на деле оборачивается еще одним серьезным недостатком, как только возникает необходимость в развитой маршрутизации, вызванная использованием сети РDН для передачи данных.
