- •Введение
- •Принципы цифровых технологий передачи сигналов
- •1.1. Особеннoсти канала передачи
- •Импульсно-кодовая модуляция (икм)
- •1.3. Методы мультиплексирования потоков данных
- •Временное мультиплексирование
- •1.3.3. Временное мультиплексирование двоичных потоков данных
- •1.4. Кодирование цифровых данных в икм системах
- •Практические методы формирования цифровой последовательности
- •Методы двоичного кодирования и ошибки квантования
- •1.4.3. Параметры стандартных икм систем
- •Цифровые иерархии скоростей передачи
- •Схемы плезиохронной цифровой иерархии – рdн
- •Особенности плезиохронной цифровой иерархии
- •Недостатки плезиохронной цифровой иерархии
- •Синхронные иерархии sonet/sdн
- •2. Синхронные цифровые сети на основе технологии sdн
- •2.1. Синхронные цифровые сети
- •2.2. Особенности построения синхронной иерархии sdн
- •Общие особенности построения синхронной иерархии
- •Топология сетей sdh
- •2.4.1. Топология "точка-точка"
- •2.4.2. Топология "последовательная линейная цепь"
- •2.4.3. Топология "звезда", реализующая функцию концентратора
- •2.4.4. Топология "кольцо"
- •Функциональные методы защиты синхронных потоков
- •А) путём исключения повреждённого участка б) путём организации обходного пути
- •Архитектура сетей sdн
- •2.6.1. Радиально-кольцевая архитектура
- •2.6.2. Архитектура типа "кольцо-кольцо"
- •2.6.3. Линейная архитектура для сети большой протяженности
- •2.6.4. Архитектура разветвленной сети общего вида
- •2.9. Интерфейс g.703
- •2.9.1. Физические и электрические характеристики интерфейса g.703
- •2.9.2 Реализация интерфейса g.703
- •4.2. Терминология цифровых сетей
- •4.2.1. Истоки появления новой терминологии
- •4.2.2. Предложения по выбору терминологии в технологиях рdн и sdн
- •Список сокращений
- •Латинские сокращения
А) путём исключения повреждённого участка б) путём организации обходного пути
В третьем случае восстановление работоспособности осуществляется за счет резервирования на уровне трибных интерфейсов. Схема резервирования в общем случае N:1, что допускает различную степень резервирования: от 1:1 (100%) до меньшей степени, например, 4:1 (25%), когда на 4 основных трибных интерфейсных карты используется одна резервная, которая автоматически выбирается системой кросс-коммутации при отказе одной из основных. Этот метод широко (если не повсеместно) распространен в аппаратуре SDH для резервирования трибных карт 2 Мбит/с (4:1 или 3:1 для SТМ-1 или 16:1, 12:1, 8:1 для SТМ-4), а также резервирования наиболее важных сменных блоков, например, блоков кросс-коммутации и систем управления и резервного питания, время переключения которых на запасные не превышает обычно 10 мсек.
В четвертом случае резервирование как таковое не используется, а работоспособность системы в целом (на уровне агрегатных блоков) восстанавливается за счет исключения поврежденного узла из схемы функционирования. Так, системы управления SDН-мультиплексоров обычно дают возможность организовывать обходной путь, позволяющий пропускать поток агрегатных блоков мимо мультиплексора в случае его отказа (рис.2.33, б). В пятом случае, характерном для сетей общего вида или ячеистых сетей, в узлах сети устанавливаются кросс-коммутаторы систем оперативного переключения, которые осуществляют, в случае отказа, вызванного либо разрывом соединительного кабеля, либо отказом узла последовательной линейной цепи, реконфигурацию прилегающих (входящих или исходящих) участков сети и соответствующую кросс-коммутацию потоков. Процедура такой реконфигурации может быть централизованной или распределенной [11]. В первом случае она осуществляется сетевым центром управления, что может быть реализовано достаточно просто, во втором – совместное решение о реконфигурации должно вырабатываться группой прилегающих систем оперативного переключения. Могут применяться и комбинированные методы.
Использование систем оперативного переключения по принципу организации защиты напоминает схему резервирования 1:1 метода резервирования по разнесенным трассам. Разница, однако, состоит в том, что в последнем случае физический или виртуальный канал уже существует, тогда, как в первом он формируется в момент оперативного переключения (действие более характерное для коммутатора/маршрутизатора в сетях пакетной коммутации).
Архитектура сетей sdн
Архитектурные решения при проектировании сети SDН могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве ее отдельных сегментов. Учитывая возможность самостоятельного использования отдельных элементарных топологий, мы рассмотрим здесь только сети, комбинирующие рассмотренные элементарные топологии. Наиболее часто используется сочетание кольцевой и радиальной (типа "точка-точка") топологий или топологии последовательной линейной цепи.
2.6.1. Радиально-кольцевая архитектура
Пример радиально-кольцевой архитектуры SDH сети приведен на рис. 2.34. Эта сеть фактически построена на базе использования двух базовых топологий: "кольцо" и "последовательная линейная цель. Вместо последней может быть использована более простая топология "точка-точка" Число радиальных ветвей ограничивается из соображений допустимой нагрузки (общего числа каналов доступа) на кольцо
Рис. 2.34. Радиально кольцевая сеть SDH
