
- •Содержание
- •1 Лекция. Токовая защита нулевой последовательности (тзнп) в сетях с большим током замыкания на землю. Фильтры токов и напряжения нулевой последовательности. Ступенчатый принцип построения защиты
- •1.1Токовая защита нулевой последовательности ( тзнп) в сетях с большим током замыкания на землю
- •1.2 Фильтры токов и напряжения нулевой последовательности
- •1.3 Ступенчатая защита нулевой последовательности
- •2 Лекция. Расчеты уставок тзнп, условия согласования ступеней тзнп
- •3 Лекция . Структурная схема дистанционной защиты со ступенчатой характеристикой, характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •3.1Структурная схема дистанционной защиты со ступенчатой характеристикой
- •4 Лекция. Принципы выполнения статических pc. Принципиальная схема полупроводникового реле сопротивления дз-2
- •5 Лекция. Дистанционная защита панели эпз-1636
- •6 Лекция. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс. Выбор уставок дистанционной защиты
- •6.2 Выбор уставок дистанционной защиты.
- •7 Лекция. Высокочастотные защиты линий
- •7.1 Принцип действия дифференциально- фазной высокочастотной
- •8 Лекция. Аппаратная часть цифровых устройств защиты, особенности обработки информации в микропроцессорных терминалах
8 Лекция. Аппаратная часть цифровых устройств защиты, особенности обработки информации в микропроцессорных терминалах
Содержание лекции: рассматривается функциональная схема РЗ на микропроцессорах.
Цель лекции: изучить структурную схему микропроцессорной защиты и принципы выполнения цифровых защит.
Функционирование измерительной и логической частей РЗ может быть представлено в математическом виде системой аналитических соотношений, описывающих процесс принятия решения о срабатывании или несрабатывании тех или иных входящих в них органов РЗ и являющихся, таким образом, их алгоритмом функционирования. Это позволяет рассматривать органы РЗ как систему арифметико-логического преобразования информации, содержащейся в воздействующих (входных и вспомогательных) величинах, которая может быть реализована в цифровом виде. При использовании МП алгоритм функционирования РЗ задается программой, хранящейся в памяти микропроцессора. Для изменения алгоритма достаточно изменить программу, не меняя элементы РЗ и связи между ними. Выполняемые таким образом РЗ называются программными, или микропроцессорными. Упрощенная функциональная блочная схема РЗ, построенная на МПС, приведена на рисунке 8.1.
Рисунок 8.1- Структурная схема микропроцессорной защиты:
ПТТ, ПТН - промежуточные трансформаторы тока и напряжения; АЦП — аналогово-цифровые преобразователи; ЧФ - частотный фильтр; МПС - микропроцессорная система; ДАЛ - цифроаналоговый преобразователь; СУ - сигнальное устройство; РАС -регистрация аварийных событий; ПЭВМ - персональная ЭВМ; I - на отключение выключателей; II — к оперативному персоналу; III - к релейному персоналу
Входным элементом, как и у всех полупроводниковых РЗ, являются промежуточные трансформаторы напряжения и тока, ПТН и ПТТ.
Выходной сигнал с промежуточных трансформаторов поступает на частотные фильтры ЧФ, которые пропускают составляющие тока и напряжения 50 Гц и не пропускают высокочастотные гармоники, являющиеся помехами, искажающими синусоиду тока и напряжения.
Аналоговые сигналы, полученные от измерительных трансформаторов в виде синусоидальных токов и напряжений, после преобразования в промежуточных трансформаторах ПТН и ПТТ и частотных фильтрах ЧФ необходимо превратить в дискретные, поскольку их обработка производится в МПС, построенных на цифровых микросхемах. Поэтому аналоговый выходной сигнал частотных фильтров ЧФ подается в устройство АЦП, предусмотренное для изменения формы сигнала на дискретную (цифровую). В АЦП измерение значения синусоидального тока (напряжения) происходит в определенные моменты времени tl t2 ... tn с интервалом времени t (рисунок 8.2, а).
а- дискретизация по времени; б) – дискретизация по параметру
Рисунок 8.2- Характеристика входной величины ( тка или напряжения)
В эти моменты времени фиксируются соответствующие им мгновенные значения, которые используются как дискретные значения синусоидального тока. Полученные таким образом дискретные сигналы через интервалы времени t передаются последовательно в моменты времени t1, t2... tn на ввод МПС в виде двоичного цифрового кода (1, когда есть импульс тока и 0, когда сигнал отсутствует). Эта операция часто называется выборкой. Очень важно чтобы значения измеряемых дискретных значений тока и напряжения точно соответствовали действительным значениям синусоидам этих величин. Кроме дискретизации по времени предусмотрена дискретизация по значению входной величины (тока или напряжения), как показано на рисунке 8.2, б. Момент выборки сигналов определяется мультивибратором, непрерывно с интервалом t генерирующим тактовые импульсы.
Для получения с помощью дискретных сигналов, возможно большей точности представления действительной синусоиды интервал t нужно выбирать, возможно, меньше. Однако следует иметь в виду, что при последовательной передаче сигналов это замедляет процесс обработки и ухудшает быстродействие РЗ.
Сигнал с выхода АЦП поступает в устройство обработки информации, каким является МПС. Основным элементом цифровой РЗ является МП, схема которого позволяет использовать его в качестве вычислительного устройства, производящего арифметические и логические операции, необходимые для выполнения им функций РЗ, представленных в виде алгоритмов действия ее измерительных и логических органов.
Микропроцессор состоит из трех основных частей:
арифметико-логического устройства АЛУ, реализующего арифметические операции (сложение, вычитание и др.), логические операции (И, ИЛИ, НЕ);
сверхоперативного запоминающего устройства СОЗУ, состоящего из набора регистров, обеспечивающих промежуточное хранение данных до завершения операций, проводимых в МП; работой МП (АЛУ и СОЗУ) по заданной программе. Элементы МП связаны между собой информационными шинами, представляющими из себя группу линий передачи информации, объединенных общим функциональным признаком (шины данных, адресов и управления). Для выполнения функций какой-либо РЗ, МП дополняется внешними устройствами памяти, образуя микропроцессорную систему (МПС).
Структура МПС приведена на рисунке 8.3. С выхода МПС (см. рисунок 8.1) цифровой сигнал поступает на цифроаналоговый преобразователь ПАП, который преобразует цифровой сигнал в аналоговый, поступающий на выходное промежуточное реле, действующее на отключение выключателя. Одновременно приводится в действие устройство сигнализации СУ, фиксирующее срабатывание РЗ, и передается соответствующая аварийная информация для записи в регистраторе аварийных событий (РАС).
Рисунок 8.3- Обобщенная структурная схема микропроцессорной системы, выполняющей функции релейной защиты.
Одновременно поступает информация на персональную ЭВМ (ПЭВМ), посредством которой осуществляется связь человек -машина.
На рисунке 8.3 приведена упрощенная структурная схема МП-системы, выполняющей функции РЗ. Система состоит из двух частей: МП и внешних устройств. К внешним устройствам МПС относятся:
устройства памяти - оперативное запоминающее устройство ОЗУ и постоянное запоминающее устройство ПЗУ;
устройства ввода и вывода аналоговой УАВВ и дискретной УДВВ информации;
средства общения человека с МПС - минидисплей и клавиатура для ручного ввода управляющих команд.
Все внешние устройства связаны друг с другом и с МП общими шинами: данных, адресов и управления. Соединение внешней части указанных шин с шинами МП осуществлена через специальные буферные устройства.
Как уже отмечалось, главным элементом МПС является сам микропроцессор (или микропроцессоры), но поскольку его структура была кратко пояснена выше, то здесь рассматриваются только виды регистров и их назначение.
Важной частью МПС являются запоминающие устройства: ПЗУ и ОЗУ. Постоянное запоминающее устройство - ПЗУ служит для хранения управляющей программы, в которой записаны последовательные команды, согласно которым должно действовать устройство управления микропроцессора - УУ, и второй основной программы, определяющей функционирование устройства РЗ. Эти программы остаются неизменными, пока остаются неизменными функции данной РЗ. В связи с этим записанная в ПЗУ информация должна сохраняться даже при исчезновении электропитания.
Оперативное запоминающее устройство – ОЗУ, необходимо для хранения данных, поступающих для обработки в МП, и результатов этой обработки и выборки из основной программы, хранящейся в ПЗУ.
Помимо этих устройств имеется сверхоперативная память -запоминающие устройства в МП в виде регистров общего назначения (РОН): они подразделяются на регистры команд и регистры накопителей (аккумуляторов). Регистр команд хранит ту команду, которую МП должен выполнить вслед за текущей. Аккумулятор хранит данные непосредственно перед входом в МП и на выходе. Регистры ускоряют поступление данных для обработки, т. е. уменьшают общее время действия МП-системы.
Для преобразования аналоговых значений токов и напряжений в цифровую форму и обратно в МПС предусмотрено устройство аналогового ввода-вывода информации (УАВВ), принцип действия которого рассмотрен выше. Типовое УАВВ обеспечивает ввод в МПС до 16 аналоговых сигналов и вывод одного-двух сигналов в аналоговой форме. Для этого УАВВ содержит один аналого-цифровой преобразователь (АЦП) и один-два цифро-аналоговых преобразователей (ЦАП), а также коммутатор для ввода с помощью одного АЦП до 16 аналоговых сигналов и вывод одного-двух сигналов в аналоговой форме. Для этого типовое устройство УАВВ содержит один аналого-цифровой преобразователь (АЦП) и один-два цифро-аналоговых преобразователя (ЦАП), а также коммутатор для ввода с помощью одного АЦП до 16 аналоговых сигналов токов и напряжений.
Микропроцессорная система должна также содержать устройство дискретного ввода-вывода УДВВ для выдачи команды на отключение выключателя и приема сигналов от других устройств. Для ввода уставок РЗ и осуществления контроля за ними в МП-системе предусмотрена упрощенная клавиатура, содержащая небольшое число цифровых и буквенных клавиш, а также минидисплей, рассчитанный на несколько строк, и порядка 20 знакомест в строке. С помощью дисплея осуществляется визуальный контроль при вводе уставок РЗ, а также оцениваются входные и выходные данные в процессе функционирования системы.
Перечисленные внешние устройства имеют связи со всеми шинами МП-системы, которая содержит часто средства для связи с персональной ЭВМ и с принтером для вывода на печать протокола работы РЗ или результатов ее периодической проверки (на схеме не показаны).
Группа элементов памяти каждого вида памяти составляет ячейку или слово памяти, содержащее число элементов, кратное 8 (8, 16, 32 и т. д.).
Слово из восьми двоичных разрядов называется байтом. В зависимости от размера ячейки памяти, МПС называют 8, 16 или 32-битными или 1-4 байтными. Каждая ячейка оперативной памяти имеет свой адрес. Совокупность нулей и единиц, находящихся в элементах памяти, представляет собой содержимое ячейки памяти.
Список литературы
1. Басс Э.И., Дорогунцев В.Г. Релейная защита электроэнергетических систем./ Под ред. А.Ф. Дьякова.- М.: Изд. МЭИ, 2002.- 295 с.
2. Чернобровов Н.В., Семенов В.А. "Релейная защита энергетических систем: Учебное пособие для техникумов".- М.: Энергоатомиздат, 1998.
4. Шабад М.А. Расчеты РЗ и А распределительных сетей: Монография.- СПб.: ПЭИПК,2003.- 350с.
5. Федосеев А.М. Релейная защита электрических систем: - М.: Энергия, 1992, - 560
6. Авербух А.М. Релейная защита в задачах с решениями и примерами. - М.: Энергия, 1975. - 416 с.
7. Руководящие указания по релейной защите. Вып.12. Токовая защита нулевой последовательности от замыканий на землю линий 110-500 кВ. Расчеты. - М.: Энергия, 1980. -88 с.
8. Руководящие указания по релейной защите. Вып. 7. Дистанционная защита линий 35-330 кВ. - М.: Энергия, 1966.