Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА ч1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.33 Mб
Скачать

6.5. Влажный насыщенный пар

Влажный насыщенный пар располагается между пограничными кривыми x = 0 и x = 1. Возьмем точку е на изобаре Р в области влажного насыщенного пара (рис. 6.15 и 6.16). В области влажного насыщенного пара параметры состояния не могут быть определены только по давлению и температуре, поскольку давление однозначно определяет температуру насыщения и изобара влажного пара одновременно является его изотермой, представляющей прямую линию в Р,v- и Т,s- диаграммах. В качестве вспомогательного условного параметра для влажного пара применяется степень сухости х. Зная степень сухости х и параметры состояний насыщения воды на линии х=0 и пара на линии х=1, можно рассчитать все остальные параметры состояния влажного пара.

П

xr

q′

араметры влажного пара обозначаются с индексом "x". 1 кг влажного пара содержит х кг сухого насыщенного пара и (1 - x) кг воды в состоянии насыщения. Следовательно, любой параметр, подчиняющийся закону сложения (аддитивности), для 1 кг влажного пара будет представлен в виде суммы произведений соответствующих параметров на x кг сухого насыщенного пара и на (1-x) кг воды при давлении или температуре насыщения. Например, расчет удельного объема, энтальпии, энтропии и внутренней энергии для влажного пара можно выполнить по формулам

vx = xv" + (1 - x)v' = v' + x(v" - v'); (6.18)

hx = h' + x(h" - h') = h' + xr; (6.19)

sx = s '+ x(s" - s'); (6.20)

ux = u' + x(u" - u'). (6.21)

Используя параметры влажного насыщенного пара, можно рассчитать его степень сухости:

. (6.22)

При этом горизонтальные отрезки 12 изобар и изотерм в Р,v- и T,s- диаграммах в области влажного насыщенного пара делятся точкой е пропорционально значению степени сухости х=(1е)/(12), что позволяет построить линии постоянных степеней сухости х=const (см. рис. 6.15 и 6.16). В критической точке сходятся все линии постоянных степеней сухости. Внутренняя энергия влажного пара проще определяется как

ux = hx - Рvx . (6.23)

Теплота, необходимая для получения влажного пара из воды c t=0 оС при изобарном ее нагревании, называется полной теплотой влажного пара и определяется как

x = q' + xr = hx - Рvo'. (6.24)

Наряду со степенью сухости x в практике часто используется понятие влажности пара (1-x). Влажность дается в долях или в процентах.

6.6. Перегретый пар

И зобарный подвод теплоты к сухому насыщенному пару приводит к повышению его температуры по отношению к температуре насыщения при данном давлении. Параметры состояния перегретого пара обозначаются соответствующими буквами без индексов (t, h, s, u и т.д.).

Получение перегретого пара можно рассмотреть на примере энергетического парогенератора. В парогенераторах для перегрева пара используют пароперегреватели, представляющие собой трубную поверхность теплообмена (рис.6.17). Внутри труб пароперегревателя проходит пар, поступающий из котла в виде влажного пара. Поверхность труб омывается горячими продуктами сгорания топлива (на ТЭС) или горячей водой или паром большего давления (на АЭС). Не учитывая незначительного падения давления, вызванного гидравлическим сопротивлением в трубах, процесс перегрева пара в пароперегревателе можно считать изобарным.

Рассмотрим методику определения калорических параметров перегретого пара. В соответствии с первым законом термодинамики теплота при перегреве пара затрачивается на изменение его внутренней энергии и на работу изменения объема. При этом теплота, идущая на изменение внутренней энергии пара, расходуется на изменение кинетической энергии молекул, что проявляется в изменении температуры, и на преодоление сил взаимодействия между молекулами – работу дисгрегации (разделения частиц). Работа изменения объема расходуется на преодоление внешнего давления и при изобарном процессе определяется как Р(v - v").

Теплота, необходимая для перевода 1 кг сухого насыщенного пара в перегретый пар с температурой t при изобарном ее нагревании, называется теплотой перегрева qп (рис. 6.18) и может быть определена как

, (6.25)

где cp – массовая изобарная теплоемкость перегретого пара.

И зобарная теплоемкость перегретого пара является переменной величиной, зависящей от давления и температуры. Она определяется экспериментально. На рис. 6.19 представлена зависимость изобарной теплоемкости перегретого пара от давления и температуры в области докритических давлений. В системе координат cp,t изображены изобары, крайние левые точки которых, соединенные пунктирной кривой, определяют cp при температуре насыщения, т.е. это изобарные теплоемкости сухого насыщенного пара на линии х=1.

Анализ представленных на графике опытных данных при Р<Ркр приводит к выводу:

1) при постоянном давлении с повышением температуры от температуры насыщения изобарная теплоемкость сначала уменьшается, проходит через минимум, а затем медленно возрастает;

2) при одной и той же температуре cp тем больше, чем выше давление;

3 ) с повышением температуры зависимость cp от Р уменьшается.

На рис. 6.20 даны экспериментальные кривые зависимости изобарной теплоемкости жидкой воды и пара при давлениях выше критического.

Анализ изменения изобарной теплоемкости воды и пара при Р>Ркр показывает:

1) при критическом давлении с повышением температуры жидкости ее изобарная теплоемкость растет и при критической температуре переходит в бесконечность, далее вблизи критической точки при t>tкр cp пара резко понижается;

2) при сверхкритических давлениях повышение температуры воды сопровождается повышением cp воды до максимума, а затем понижением теплоемкости пара;

3) с повышением давления уменьшается степень изменения cp от температуры, значение максимума снижается, а максимум теплоемкости смещается в область более высоких температур.

П оскольку изобарная теплоемкость перегретого пара является величиной переменной, определение энтальпии перегретого пара ведется через теплоту перегрева

h = h" + qп , (6.26)

а энтропию перегретого пара рассчитывают, используя экспериментальные данные по зависимости теплоемкости от температуры и давления, по формуле

. (6.27)

Проведенный анализ определения термодинамических свойств воды и водяного пара приводит к выводу, что нахождение параметров воды и пара связано с трудоемкими экспериментальными исследованиями и сложными математическими вычислениями. Поэтому экспериментальные данные и расчеты, выполненные на их основе, по определению калорических параметров и других характеристик воды и водяного пара используются для составления таблиц термодинамических свойств воды и водяного пара и для построения диаграмм. C применением данных этих таблиц выполняются все расчеты, в которых необходимы параметры и характеристики воды и водяного пара.