
- •Техническая термодинамика
- •Часть 1
- •Иваново 2006
- •Научный редактор
- •Введение техническая термодинамика как теоретическая основа теплоэнергетики
- •1. Общие определения и понятия
- •1.1. Термодинамическая система
- •1.2. Термодинамические параметры состояния
- •Основные термические параметры состояния
- •Удельный объем
- •Давление
- •Соотношения единиц измерения давления
- •Температура
- •1.3.2. Уравнение состояния термодинамической системы
- •1.3.3. Термические коэффициенты
- •1.3.4. Термодинамический процесс
- •2. Первый закон термодинамики для закрытой системы
- •2.1. Работа изменения объема
- •2.2. Теплота, теплоемкость, энтропия
- •2.3. Внутренняя энергия
- •2.4. Первый закон термодинамики для закрытой системы
- •2.4.1. Аналитические выражения первого закона термодинамики.
- •2.4.2. Энтальпия
- •3. Газы и газовые смеси
- •3.1. Законы идеальных газов
- •3.1.1. Внутренняя энергия идеального газа
- •3.1.2. Теплоемкости газов
- •Удельные теплоемкости
- •Теплоемкости процессов
- •Теплоемкости идеальных газов
- •Теплоемкость реальных газов
- •Отношение изобарной и изохорной теплоемкостей
- •3.1.3. Энтальпия идеальных газов
- •3.1.4. Энтропия идеальных газов
- •3.2. Газовые смеси
- •Основные характеристики смеси газов
- •Теплоемкости газовых смесей
- •4. Газовые процессы
- •4.1. Политропные процессы
- •4.2. Частные случаи политропных процессов
- •Уравнения процессов, расчетные выражения их теплоты, работы, изменения внутренней энерги, энтальпии и энтропи
- •4.3. Изображение политропных процессов в р,V и t,s- диаграммах Политропа в р,V- диаграмме
- •Политропа в t,s- диаграмме
- •4.4. Установление показателя политропы по опытным данным
- •4.5. Качественный и количественный анализ политропных процессов в р,V- и t,s- диаграммах
- •4.6. Определение термодинамических свойств идеальных газов с учетом влияния температуры на их изобарную и изохорную теплоемкости
- •Определение энергетических параметров идеальных газов с учетом влияния температуры на cp и cv
- •5. Реальные газы и пары
- •5.1. Термические свойства реальных газов
- •5.2. Уравнения состояния реальных газов. Энергетические свойства реальных газов
- •6. Термодинамические свойства воды и водяного пара
- •6.1. Фазовые состояния и превращения воды
- •6.2. Фазовые диаграммы р,t-, р,V- и t,s для н2о
- •6.3. Жидкость на линии фазового перехода
- •6.4. Сухой насыщенный пар
- •6.5. Влажный насыщенный пар
- •6.6. Перегретый пар
- •6.7. Таблицы термодинамических свойств воды и водяного пара
- •6.8. Диаграмма t,s для воды и водяного пара
- •6.9. Диаграмма h,s для воды и водяного пара
- •6.10. Основные процессы изменения состояния водяного пара
- •Адиабатный процесс
- •Изохорный процесс
- •Изобарный процесс
- •Изотермический процесс
- •7. Влажный воздух
- •7.1. Основные характеристики влажного воздуха
- •7.2. Характеристики атмосферного влажного воздуха
- •Психрометр
- •Область ненасыщенного влажного воздуха
- •Область перенасыщенного влажного воздуха
- •Изображение в h,d- диаграмме изотерм меньше 0 оС и особенности характеристик влажного воздуха при отрицательных температурах
- •Пример пользования h,d- диаграммой
- •Изображение процессов влажного воздуха в h,d- диаграмме
- •8. Второй закон термодинамики
- •8.1. Замкнутые процессы (циклы)
- •8.1.1. Коэффициенты, характеризующие тепловую экономичность обратимых циклов
- •8.1.2. Цикл Карно
- •8.1.3. Обратный цикл Карно
- •8.1.4. Регенеративный (обобщенный) цикл Карно
- •8.1.5. Теорема Карно
- •8.1.6. Термодинамическая шкала температур.
- •8.2. Энтропия реальных тел и ее изменение в необратимых
- •8.3. Изменение энтропии изолированной системы
- •8.3.1. Изменение энтропии изолированной системы
- •8.3.2. Изменение энтропии изолированной системы
- •8.3.3. Принцип возрастания энтропии изолированной системы
- •8.4. Получение работы в изолированной системе. Эксергия в объеме и ее потери
- •8.4.1. Эксергия в объеме
- •8.4.2. Практическое значение эксергии
- •8.4.2.1. Определение эксергии источников работы, имеющих
- •8.4.2.2. Определение влияния необратимости на полезную работу в изолированной системе
- •Необратимый теплообмен
- •Необратимость, обусловленная преобразованием работы в теплоту путем трения
- •Необратимость при расширении газа в вакуум
- •Необратимость при диффузионном смешении газов с одинаковыми температурами и давлениями
- •Изменение энтропии газов в этом процессе будет определяться выражением
- •Необратимое преобразование теплоты в работу при источнике работы с постоянной температурой
- •Необратимое преобразование теплоты в работу при источнике работы с конечной теплоемкостью
- •Методы оценки тепловой экономичности реальных циклов тепловых машин
- •Заключение
- •Библиографический список
- •Оглавление
- •1.3.2. Уравнение состояния термодинамической системы……...……. 15
- •1.3.3. Термические коэффициенты……………………………………….. 17
- •Чухин Иван Михайлович
- •Часть 1
- •153003, Г. Иваново, ул. Рабфаковская, 34.
- •153025, Г. Иваново, ул. Дзержинского, 39.
6.4. Сухой насыщенный пар
В
фазовых диаграммах Р,v- и T,s cостояния
сухого насыщенного пара определяются
точками правой пограничной кривой КЛ
на линии х=1 (рис. 6.12 и 6.13).
Процесс 23 фазового перехода жидкости от состояния насыщения в сухой насыщенный пар является изобарно-изотермическим, т.е. здесь изобара совпадает с изотермой насыщения воды. Рассмотрим методику определения калорических параметров сухого насыщенного пара.
Теплота, затраченная на превращение 1 кг жидкости в состоянии насыщения (кипения) в сухой насыщенный пар при постоянном давлении (температуре), называется удельной теплотой парообразования и обозначается буквой r, она может быть определена экспериментально.
Все параметры сухого насыщенного пара отмечаются двумя штрихами (v", h", s" и т.д.). Исходя из первого закона термодинамики для процесса парообразования можно записать:
r = u"- u' + Р(v"- v') = h"- h'. (6.9)
В процессе парообразования температура не изменяется, следовательно, разность внутренних энергий u" - u' соответствует только изменению потенциальной ее составляющей или, как ее называют, работе дисгрегации (разъединения молекул), т.е. собственно работе перевода жидкости в пар. Она называется внутренней теплотой парообразования и обозначается буквой :
= u" - u' . (6.10)
Работа изменения объема при парообразовании называется внешней теплотой парообразования и обозначается буквой :
= Р(v" - v') . (6.11)
В диаграмме Р,v она представлена площадью под горизонталью 23 (рис.6.12). Использовав введенные обозначения, уравнение (6.9) можно представить в виде
r = + . (6.12)
При критическом давлении все члены равенства (6.12) равны нулю: r===0.
В изобарном процессе 123 (см. рис.6.13) затрачивается теплота для нагрева жидкости от t=0 оС до состояния сухого насыщенного пара, называющаяся полной теплотой сухого насыщенного пара:
" = q' + r = q' + + = h" - Рvo' . (6.13)
Эта теплота и все ее слагаемые зависят от давления или от температуры насыщения. Зависимость этих величин от температуры насыщения представлена на рис. 6.14.
Теплоту парообразования можно выразить через разницу энтальпий (6.9). Следовательно, энтальпию сухого насыщенного пара можно определить как
h" = h' + r = q' + Рvo' + r = " + Рvo'. (6.14)
Из рис. 6.14 видно, что " имеет максимум. Поскольку Рvo' несоизмеримо мала по сравнению с ", то и h" имеет максимум. При этом важно отметить, что максимум энтальпии сухого насыщенного пара h" находится при температуре меньшей, чем у критической точки.
Внутренняя энергия сухого насыщенного пара определяется из соотношения
u" = h" - Рv" . (6.15)
Изменение энтропии при изобарно-изотермическом процессе парообразования 23 может быть определено как
,
(6.16)
откуда получаем значение энтропии сухого насыщенного пара
″ max