
- •Техническая термодинамика
- •Часть 1
- •Иваново 2006
- •Научный редактор
- •Введение техническая термодинамика как теоретическая основа теплоэнергетики
- •1. Общие определения и понятия
- •1.1. Термодинамическая система
- •1.2. Термодинамические параметры состояния
- •Основные термические параметры состояния
- •Удельный объем
- •Давление
- •Соотношения единиц измерения давления
- •Температура
- •1.3.2. Уравнение состояния термодинамической системы
- •1.3.3. Термические коэффициенты
- •1.3.4. Термодинамический процесс
- •2. Первый закон термодинамики для закрытой системы
- •2.1. Работа изменения объема
- •2.2. Теплота, теплоемкость, энтропия
- •2.3. Внутренняя энергия
- •2.4. Первый закон термодинамики для закрытой системы
- •2.4.1. Аналитические выражения первого закона термодинамики.
- •2.4.2. Энтальпия
- •3. Газы и газовые смеси
- •3.1. Законы идеальных газов
- •3.1.1. Внутренняя энергия идеального газа
- •3.1.2. Теплоемкости газов
- •Удельные теплоемкости
- •Теплоемкости процессов
- •Теплоемкости идеальных газов
- •Теплоемкость реальных газов
- •Отношение изобарной и изохорной теплоемкостей
- •3.1.3. Энтальпия идеальных газов
- •3.1.4. Энтропия идеальных газов
- •3.2. Газовые смеси
- •Основные характеристики смеси газов
- •Теплоемкости газовых смесей
- •4. Газовые процессы
- •4.1. Политропные процессы
- •4.2. Частные случаи политропных процессов
- •Уравнения процессов, расчетные выражения их теплоты, работы, изменения внутренней энерги, энтальпии и энтропи
- •4.3. Изображение политропных процессов в р,V и t,s- диаграммах Политропа в р,V- диаграмме
- •Политропа в t,s- диаграмме
- •4.4. Установление показателя политропы по опытным данным
- •4.5. Качественный и количественный анализ политропных процессов в р,V- и t,s- диаграммах
- •4.6. Определение термодинамических свойств идеальных газов с учетом влияния температуры на их изобарную и изохорную теплоемкости
- •Определение энергетических параметров идеальных газов с учетом влияния температуры на cp и cv
- •5. Реальные газы и пары
- •5.1. Термические свойства реальных газов
- •5.2. Уравнения состояния реальных газов. Энергетические свойства реальных газов
- •6. Термодинамические свойства воды и водяного пара
- •6.1. Фазовые состояния и превращения воды
- •6.2. Фазовые диаграммы р,t-, р,V- и t,s для н2о
- •6.3. Жидкость на линии фазового перехода
- •6.4. Сухой насыщенный пар
- •6.5. Влажный насыщенный пар
- •6.6. Перегретый пар
- •6.7. Таблицы термодинамических свойств воды и водяного пара
- •6.8. Диаграмма t,s для воды и водяного пара
- •6.9. Диаграмма h,s для воды и водяного пара
- •6.10. Основные процессы изменения состояния водяного пара
- •Адиабатный процесс
- •Изохорный процесс
- •Изобарный процесс
- •Изотермический процесс
- •7. Влажный воздух
- •7.1. Основные характеристики влажного воздуха
- •7.2. Характеристики атмосферного влажного воздуха
- •Психрометр
- •Область ненасыщенного влажного воздуха
- •Область перенасыщенного влажного воздуха
- •Изображение в h,d- диаграмме изотерм меньше 0 оС и особенности характеристик влажного воздуха при отрицательных температурах
- •Пример пользования h,d- диаграммой
- •Изображение процессов влажного воздуха в h,d- диаграмме
- •8. Второй закон термодинамики
- •8.1. Замкнутые процессы (циклы)
- •8.1.1. Коэффициенты, характеризующие тепловую экономичность обратимых циклов
- •8.1.2. Цикл Карно
- •8.1.3. Обратный цикл Карно
- •8.1.4. Регенеративный (обобщенный) цикл Карно
- •8.1.5. Теорема Карно
- •8.1.6. Термодинамическая шкала температур.
- •8.2. Энтропия реальных тел и ее изменение в необратимых
- •8.3. Изменение энтропии изолированной системы
- •8.3.1. Изменение энтропии изолированной системы
- •8.3.2. Изменение энтропии изолированной системы
- •8.3.3. Принцип возрастания энтропии изолированной системы
- •8.4. Получение работы в изолированной системе. Эксергия в объеме и ее потери
- •8.4.1. Эксергия в объеме
- •8.4.2. Практическое значение эксергии
- •8.4.2.1. Определение эксергии источников работы, имеющих
- •8.4.2.2. Определение влияния необратимости на полезную работу в изолированной системе
- •Необратимый теплообмен
- •Необратимость, обусловленная преобразованием работы в теплоту путем трения
- •Необратимость при расширении газа в вакуум
- •Необратимость при диффузионном смешении газов с одинаковыми температурами и давлениями
- •Изменение энтропии газов в этом процессе будет определяться выражением
- •Необратимое преобразование теплоты в работу при источнике работы с постоянной температурой
- •Необратимое преобразование теплоты в работу при источнике работы с конечной теплоемкостью
- •Методы оценки тепловой экономичности реальных циклов тепловых машин
- •Заключение
- •Библиографический список
- •Оглавление
- •1.3.2. Уравнение состояния термодинамической системы……...……. 15
- •1.3.3. Термические коэффициенты……………………………………….. 17
- •Чухин Иван Михайлович
- •Часть 1
- •153003, Г. Иваново, ул. Рабфаковская, 34.
- •153025, Г. Иваново, ул. Дзержинского, 39.
4.3. Изображение политропных процессов в р,V и t,s- диаграммах Политропа в р,V- диаграмме
На рис.4.2 изображены характерные политропные процессы в Р,v- координатах. Все процессы проведены через общую точку А, что позволяет наглядно сопоставить изображение политроп с различными значениями показателя политропы n.
Показатель политропы определяет характер процесса. В Р,v- координатах политропа описывается уравнением Рvn=const, в соответствии с которым основные процессы будут представлять:
изобара – горизонтальная прямая, n=0, Р=const;
изохора – вертикальная прямая, n=, v=const;
изотерма – равнобокая гипербола с осями асимптот в виде осей координат Р и v, т.к. при n=1 уравнение изотермы p=const/v, причем константа – величина положительная;
адиабата – неравнобокая гипербола, т.к. при n=к>1 уравнение адиабаты Р=const/vк, адиабата круче изотермы.
Политропы при 0 < n < + в соответствии с уравнением Р=const/vn представляют собой гиперболы, крутизна которых возрастает с увеличением показателя n. Самая крутая из них – изохора (n=), а самая пологая – изобара (n=0). Все политропы с положительным показателем n>0 располагаются во II и IV квадрантах относительно точки А.
Политропы с 1 < n < к располагаются между изотермой и изобарой и имеют отрицательную теплоемкость в соответствии с уравнением (4.9). В таких процессах при подводе теплоты температура газа уменьшается, а при отводе теплоты от газа его температура увеличивается. Примером такого процесса может служить сжатие газа (l<0) в цилинре с поршнем при его внешнем охлаждении (q<0), когда величина работы сжатия по модулю больше величины, отведеной от газа теплоты |l|>|q|, т.е. в этом случае будет увеличение внутренней энергии (u=q-l>0) и температуры газа при отводе от него теплоты.
Политропы с отрицательным показателем - < n < 0 – это кривые, которые в соответствии с уравнением Р=constv-n проходят через начало координат, причем если
n
= -1 – это прямая линия,
-1 < n < 0 – кривая выпуклостью вверх,
- < n < -1 – кривая выпуклостью вниз.
При n=-1 теплоемкость процесса имеет среднее арифметическое значение между изобарной и изохорной теплоемкостями: с=(cp+cv)/2.
Все политропы с отрицательным показателем n<0 располагаются в I и III квадрантах относительно точки А.
В диаграмме P,v изотермы, а также адиабаты идеального газа представляют собой непересекающиеся гиперболы (рис.4.3). Однако они не являются эквидистантными кривыми, поскольку расстояние между ними по оси v будет изменяться в зависимости от численного значения давления.
Так для двух изотерм Т1=const и Т2=const расстояние по оси v будет определяться по изобаре P=const выражением
v2 - v1 = R(T2-T1)/P.
В
соответствии с этим выражением при
увеличении давления расстояние между
двумя изотермами по оси v уменьшается,
если Т2>Т1.
Кроме этого, исходя из уравнения изобары
Т2/Т1=v2/v1,
изотермы в P,v- диаграмме находятся одна
над другой (или одна правее другой) по
в
озрастающей,
т.к. Т2>T1
только при v2>v1.
Для двух адиабат s1=const и s2=const расстояние между ними по оси v можно оценить по любой изобаре P=const. Исходя из уравнений адиабатного и изобарного процессов,
Pvк = const и s2 - s1 = cpLn(v2/v1) ,
следует, что точке на данной изобаре с большим объемом будет соответствовать большее значение энтропии, т.е. при v2>v1 будет s2>s1. Следовательно, в Р,v- диаграмме адиабаты (изоэнтропы) чем выше (или правее), тем большее значение энтропии им соответствует.
Для изоэнтропы s2 в уравнении Pvк=const=А2 константа А2 будет больше, чем константа А1 изоэнтропы s1 в уравнении Pvк=const=А1, поскольку при Р=const Pv2к-Pv1к=А2-А1>0. Выразив объем из уравнения адиабаты v=const/P1/к, получим расстояние между двумя адиабатами вдоль оси v в виде выражения
.
Из этого выражения видно, что с увеличением давления расстояние между адиабатами вдоль оси v в P,v- диаграмме уменьшается, т.е. адиабаты в Р,v- диаграмме не являются эквидистантными кривыми, хотя на всем своем протяжении не пересекаются друг с другом.