
- •Влияние легирующих элементов на свойства стали
- •Маркировка легированных сталей
- •Классификация легированных сталей
- •Взаимодействие легирующих элементов с углеродом и железом
- •Характеристика основных структурных классов сталей
- •Контрольные вопросы
- •20 Мм. Втулки плунже-
- •5Хнм 850 Масло 450-500 44-42
- •Структура, свойства и назначение порошковых сталей
- •Прессование
- •Спекание
- •Маркировка порошковых сталей
- •Микроструктура порошковых сталей
- •Термическая обработка порошковых сталей
- •Классификация и маркировка твердых сплавов
- •Технология изготовления твердосплавных материалов
- •Получение порошка вольфрама
- •Получение порошка карбида вольфрама
- •Получение двойного карбида TiC – wc
- •Прессование
- •Спекание
- •Пайка твердосплавных пластин
- •Литые и наплавочные твердые сплавы
- •Контрольные вопросы
Взаимодействие легирующих элементов с углеродом и железом
Структура высоколегированных сталей зависит от типа легирующих элементов, их количественного соотношения между собой и содержания углерода в стали.
Легирующие элементы по взаимодействию с углеродом разделяются на некарбидообразующие Ni, Со, Si, В, Al и другие, карбидообразующие Mn, Cr, Mo, W, V, Nb, Zr, Ti (элементы перечислены в порядке возрастания их карбидообразующей способности). Карбидообразующие элементы могут растворяться в цементите или образовывать собственные более стойкие и твердые карбиды, чем цементит.
Рассмотрим характер взаимодействия легирующих элементов с железом. Существуют два взаимно различных типа такого взаимодействия.
Равновесные температуры A3 и A4 для чистого железа равны соответственно 911 °С и 1392 °С. В интервале указанных температур устойчивая модификация Feγ с ГЦК решеткой. Никель, марганец, кобальт и другие понижают температуру A3 и повышают температуру A4. В сплавах железа с этими элементами γ - область "открывается", т.е. в определенном интервале температур существует неограниченная растворимость компонентов в твердом состоянии - твердые растворы с ГЦК решеткой. При этом температура A3 при определенной концентрации добавки понижается ниже нуля.
В сплавах с концентрацией добавки, равной или превышающей концентрацию, соответствующую точке М, ГЦК решетка устойчива при температуре 20-25 °С (рисунок 10.1 а). Такие сплавы называют аустенитными сталями. Таким образом, аустенитом называют не только твердый раствор углерода в Feγ, но и любые твердые растворы на основе Feγ.
Все элементы, которые растворяются в железе, влияют на температурный интервал существование его аллотропических модификаций (А = 911oС, А =1392oС). В зависимости от расположения элементов в периодической системе и строения кристаллической решетки легирующего элемента возможны варианты взаимодействия легирующего элемента с железом. Им соответствуют и типы диаграмм состояния сплавов системы железо – легирующий элемент (рис. 17.1) Большинство элементов или повышают А и снижают А , расширяя существовавшие γ–модификации (рис.17.1.а), или снижают А4 и повышают А , сужая область существования γ– модификации (рис.17.1.б).
Рис. 17.1. Схематические диаграммы состояния Fe – легирующий элемент. а – для элементов, расширяющих область существования γ–модификации; б – для элементов, сужающих область существования γ–модификации.
Свыше определённого содержания марганца, никеля и других элементов, имеющих гранецентрированную кубическую решетку, – состояние существует как стабильное от комнатной температуры до температуры плавления, такие сплавы на основе железа называются аустенитными. При содержании ванадия, молибдена, кремния и других элементов, имеющих объемно-центрированную кубическую решетку. Выше определённого предела устойчивым при всех температурах является α– состояние. Такие сплавы на основе железа называются ферритными. Аустенитные и ферритные сплавы не имеют превращений при нагреве и охлаждении.
Подавляющее количество л.э. уменьшают растворимость углерода в аустените и концентрацию углерода в эвтектоидной стали, т.е. сдвигают точки E и S влево (исключение – сильные карбидообразователи типа V и Ti); элементы, расширяющие g-область снижают температуру А1(например, Ni, Mn); элементы, сужающие g-область – повышают температуру А1 (например, Cr, Si).
Все легирующие элементы превращают температуры эвтектического и эвтектоидного превращения в интервал температур в соответствие с правилом фаз Гиббса.
Если сталь легировать элементами, расширяющими область существования аустенита (аустенизаторами), Ni, Mn, Со др., то при определенном их содержании можно получить аустенитную структуру для всех температур твердого состояния выше 20 ºС.
Cr, Мо, W, V, Ti, Si и другие элементы повышают температуру A3и понижают температуру A4. В этом случае температурный интервал устойчивости аустенита уменьшается и соответственно расширяется температурный интервал устойчивости Feα. Все перечисленные элементы обра-
зуют с железом диаграмму с "замкнутой" γ - областью (рисунок 10.1 б).
Концентрация, соответствующая точке N, для большинства элементов невелика (до 1,5 %), лишь для хрома аустенитная область простирается до 12 %. Из перечисленных элементов, дающих "замкнутую" область, только Cr и V не образуют с железом промежуточных фаз. Наблюдается неограниченная растворимость хрома и ванадия в железе с ОЦК решеткой.
Остальные легирующие элементы, замыкающие область, образуют с железом промежуточные фазы; поэтому при определенных концентрациях добавки на диаграммах появляется линия, ограничивающая растворимость,правее которой расположены двухфазные области.
Однофазные сплавы с ОЦК решеткой, устойчивой при всех температурах, вплоть до солидуса, называют ферритными сталями. Таким образом,ферритом называют не только твердый раствор углерода в Feα, но и любые твердые растворы на основе Feα, При достаточно большом легировании малоуглеродистой стали хромом, молибденом, вольфрамом, ванадием и другими (ферризаторами), она во всем диапазоне температур твердого состояния будет иметь структуру феррита и относится к ферритному классу.
Высоколегированные стали одними только аустенизаторами обычно не легируют. Как правило, в них содержится то или иное количество компонентов ферризаторов, прежде всего хрома. При определенном их сочетании сталь будет аустенитно-ферритного класса, аустенитно-мартенситного и мартенситно-ферритного классов.