- •Царенко с. В. Нейрореаниматология. Интенсивная терапия черепно-мозговой травмы
- •Аннотация
- •Оглавление
- •Глава 1. Методология оценки эффективности лечебных мероприятий
- •Глава 2. Травматические поражения мозга: теоретические предпосылки и принципы лечения
- •Глава 3. Экстрацеребральная патология при чмт - теоретические предпосылки и принципы лечения
- •Глава 4. Нейромониторинг
- •Глава 5. Диагностика и мониторинг экстрацеребральной патологии
- •Глава 6. Мероприятия интенсивной терапии
- •Вступление
- •Глава 1. Методология оценки эффективности лечебных мероприятий
- •Глава 2. Травматические поражения мозга: теоретические предпосылки и принципы лечения
- •2.1. Доктрина профилактики вторичного повреждения мозга
- •2.2. Повышение доставки кислорода и нутриентов
- •2.2.1. Увеличение перфузии и оксигенации
- •2.2.2. Изменение тонуса церебральных сосудов
- •2.2.3.Увеличение текучести крови
- •2.3. Снижение потребностей мозга
- •2.4. Особенности реализации доктрины профилактики вторичного повреждения мозга – физиологические факторы
- •2.4.1. Центральная регулирующая роль мозга и экстрацеребральные нарушения
- •2.4.2. Гематоэнцефалический барьер и осмотическое давление
- •2.5. Особенности доктрины профилактики вторичного повреждения мозга – анатомические факторы. Доктрина Монро-Келли
- •2.6. Противоречия доктрин
- •2.6.1. Гипервентиляция
- •2.6.2. Седативные препараты, наркотические анальгетики и миорелаксанты
- •2.6.3. Гиперосмоляльные препараты и салуретики
- •2.6.4. Артериальная гипертензия: концепция Лунда или вазоконстрикторный каскад?
- •2.6.5. Отек мозга – формы и стадии
- •2.6.6. Предупреждение гибели нейронов
- •Глава 3. Экстрацеребральная патология при чмт - теоретические предпосылки и принципы лечения
- •3.1. Водно-электролитные расстройства
- •3.1.1. Механизмы нарушения регуляции водно-электролитного обмена при чмт
- •3.1.2. Нарушения содержания натрия
- •3.1.3. Нарушения содержания калия
- •3.1.4. Другие электролитные нарушения
- •3.2. Нарушения кислотно-основного состояния
- •3.2.1. Респираторный алкалоз
- •3.2.2. Респираторный ацидоз
- •3.2.3. Метаболический алкалоз
- •3.2.4. Метаболический ацидоз
- •3.2.5. Комплексные (двойные и тройные) расстройства кос
- •3.3. Нарушения центральной гемодинамики
- •3.3.1. Поддержание объема циркулирующей крови
- •3.3.2. Артериальное давление
- •3.4. Острая дыхательная недостаточность
- •3.4.1. Основные причины дыхательных расстройств
- •3.4.2. Основные синдромы дыхательных расстройств
- •3.5. Острая почечная недостаточность
- •3.5.1. Преренальная опн
- •3.5.2. Истинная опн
- •3.5.3. Постренальная опн
- •3.5.4. Полиурия при чмт
- •3.5.5. Олигурия при чмт
- •3.6. Нарушения функции желудочно-кишечного тракта
- •3.7. Белково-энергетическая недостаточность
- •3.8. Нарушения системы гемостаза и тромбоэмболические осложнения
- •3.9. Гнойно-септические и иммунные нарушения
- •Глава 4. Нейромониторинг
- •4.1. Оценка неврологического статуса
- •4.2. Методы нейровизуализации.
- •4.3. Методы оценки мозгового кровотока.
- •4.4. Методики контроля внутричерепной гипертензии.
- •4.5. Методы оценки метаболизма мозга.
- •4.6. Нейрофизиологические методы.
- •Глава 5. Диагностика и мониторинг экстрацеребральной патологии
- •5.1. Диагностика сочетанных повреждений
- •5.2. Мониторинг гемодинамики
- •5.2.1. Измерение центрального венозного давления, давления в легочной артерии, давления заклинивания легочной артерии
- •5.2.2. Измерение сердечного выброса
- •5.2.3. Эхокардиография и электрокардиография
- •5.2.4. Ферментная диагностика
- •5.3. Мониторинг дыхания (респираторный мониторинг)
- •5.4. Лабораторный мониторинг: клинические и биохимические исследования
- •5.5. Мониторинг микрофлоры
- •Глава 6. Мероприятия интенсивной терапии
- •6.1. Периоды черепно-мозговой травмы
- •6.2.Нейрореанимационный период
- •6.2.1. Коррекция центральной гемодинамики
- •6.2.2. Обеспечение функции внешнего дыхания
- •6.2.2.1. Обеспечение проходимости дыхательных путей
- •6.2.2.2. Режимы ивл
- •6.2.2.3. Параметры ивл.
- •6.2.3. Коррекция внутричерепной гипертензии
- •6.2.4. Лечение и предупреждение судорог
- •6.2.5. Лечение внечерепных и внутричерепных гнойно-септических осложнений
- •6.2.6. Нутритивная поддержка
- •6.2.7. Мероприятия по уходу
- •6.3. Этап гнойно-септических осложнений и органной недостаточности
- •6.3.1. Коррекция гемодинамики
- •6.3.2. Респираторная поддержка
- •6.3.3. Поддержание оксигенации тканей
- •6.3.4. Противосудорожные препараты
- •6.3.5. Профилактика и лечение внечерепных гнойно-септических осложнений
- •6.3.6. Профилактика и лечение внутричерепных нагноений
- •6.3.7. Нутритивная поддержка
- •6.3.8. Хирургическое лечение
- •6.3.9. Мероприятия по уходу
- •6.4. Нейрореабилитационный этап
- •6.4.1. Принципы нейрореабилитации
- •6.4.2. Коррекция центральной гемодинамики
- •6.4.3. Респираторная поддержка
- •6.4.8. Мероприятия по уходу
- •6.5. Протоколы и алгоритмы лечебно-диагностических мероприятий на различных этапах чмт
- •6.5.1. Протокол диагностических мероприятий при поступлении в отделении реанимации Обязательные мероприятия
- •6.5.2. Протокол диагностических мероприятий при дальнейшем пребывании в отделении реанимации
- •6.5.3. Протокол выполнения кт головного мозга
- •6.5.4. Протоколы мониторинга и цели лечения в нейрореанимационном периоде
- •6.5.5. Алгоритм мероприятий при ухудшении неврологического статуса и (или) повышении вчд более 25 мм рт.Ст.
- •6.5.6. Алгоритм поиска и лечения гнойно-септических осложнений
- •6.5.7. Примерный суточный лист назначений в нейрореанимационном периоде (5-е сутки чмт)
- •6.5.8. Примерный суточный лист назначений в периоде гнойно-септических осложнений и органных нарушений (10-е сутки чмт)
- •6.5.9. Примерный суточный лист назначений в реабилитационном периоде (20-е сутки чмт)
- •6.6. Ятрогенные осложнения
- •6.6.1. Осложнения назо-и оротрахеальной интубации
- •6.6.2. Осложнения трахеостомии
- •6.6.3. Осложнения установки и использования желудочного зонда
- •6.6.4. Осложнения катетеризации мочевого пузыря
- •6.6.5. Осложнения катетеризации центральных и периферических вен
- •6.6.6. Осложнения нейромониторинга
- •6.6.7. Осложнения люмбальной пункции, катетеризации люмбального и вентрикулярного пространств
- •6.6.8. Недостатки ухода за кожей
- •Заключение
- •Приложение 1. Рекомендательный протокол оказания помощи на догоспитальном этапе при тяжелой чмт
- •Мероприятия на месте происшествия
- •Мероприятия при транспортировке
- •Приложение 2. Принципы оснащения нейрохирургической реанимации (в расчете на 10-коечное отделение)
- •Список литературы
4.5. Методы оценки метаболизма мозга.
Оценка метаболических процессов в мозге базируется на мониторинге оксигенации и концентрации ряда биохимических субстратов в трех жидкостях: в крови, оттекающей от мозга, в интерстициальной жидкости мозга и в ликворе.
Церебральная оксигенация может оцениваться как по насыщению кислородом (сатурации) гемоглобина в оттекающей от мозга крови, так и при помощи непосредственной регистрации напряжения кислорода в мозге. Для определения насыщения гемоглобина кислородом в венозной крови, оттекающей от мозга по яремным венам (SjO2), используют повторные анализы крови из этих сосудов. Возможно получение данных с помощью специального фиброоптического датчика, установленного в луковице яремной вены (методика югулярной оксиметрии). Показания датчика позволяют мониторировать сатурацию венозной крови и являются более информативными, чем дискретные данные (рис. 4.32).
Рис. 4.32. Принцип отраженной спектрофотометрии (югулярной оксиметрии)
Патологическим считается величина SjO2 ниже 50%, уровень 50-55% расценивается как критический. Величина SjO2 выше 75% считается проявлением повышенного кровенаполнения (гиперемии) мозга (J. Cruz. 1998).
Метод югулярной оксиметрии имеет ряд недостатков. Одним из них является большое количество артефактных данных из-за движений головы больного, низкой интенсивности сигнала и его искажения из-за примеси экстрацеребральной крови. Выполнение методики может вызывать осложнения, связанные с введением катетера – повреждение сонной артерии и окружающих нервных стволов. Имеются проблемы, вызванные нахождением катетера в яремной вене, основные из которых - инфицирование и тромбоз.
Прямое определение напряжения кислорода в ткани мозга (рtiO2) основано на имплантации специального полярографического электрода непосредственно в вещество мозга (рис. 4.33).
Рис. 4.33. Схема измерения рtiO2
Такой же датчик может быть использован для оценки напряжения кислорода в ликворе. Принцип полярографического метода базируется на превращении минимального количества молекулярного кислорода, растворенного в электролитном растворе, в гидроксильные ионы. Указанная химическая реакция, протекающая вблизи полярографического катода, вызывает появление электрического тока, величина которого прямо пропорциональна диффузии молекулярного кислорода через мембрану электрода из окружающих тканей. Нормальными величинами рtiO2 считаются 25-30 мм рт.ст. при напряжении кислорода в артериальной крови около 100 мм рт.ст.
Точность и отсутствие артефактов являются достоинствами полярографического метода. Величина рtiO2 представляет собой баланс между кислородом, доставленным к мозгу и потребленным им. Данное обстоятельство, а также локальный характер измерений затрудняют интерпретацию полученных результатов. Как и югулярная оксиметрия, методика является инвазивной и несет потенциальную опасность инфекционных осложнений.
Церебральная оксиметрия в диапазоне излучения, близком к инфракрасному - неинвазивный метод (рис. 4.34).
Рис. 4.34. Принцип работы церабрального оксиметра. Показана схема наиболее вероятных траекторий фотонов от источника инфракрасного света до двух датчиков. Датчик I улавливает фотоны, прошедшие через поверхностные слои (череп и скальп), датчик II - фотоны, прошедшие через поверхностные и гдубокие слои (череп, скальп и мозг). Показания датчика II вычитаются из показаний датчика I
Принцип методики основан на детекции параинфракрасного излучения (длина волны 730 и 810 нм) двумя фотодиодами. Естественные хромофоры, в основном оксигенированный и восстановленный гемоглобин способны поглощать параинфракрасное излучение. Методика расчета основывается на вычислении относительной величины восстановленного гемоглобина по отношению к его общему количеству. Показатели выражаются в насыщении гемоглобина кислородом в процентах. Для детекции сигнала от мозгового вещества, не смешанного с сигналами от экстрацеребральных тканей, фотодиоды, служащие детекторами, располагаются на расстоянии 30 и 40 мм от источника света. Дальний из диодов воспринимает излучение, прошедшее через кожу, мышечные ткани, кости черепа и мозг, ближний - только излучение, прошедшее через ткани скальпа и черепа. Так как 80-85% крови в полости черепа является венозной, то показания церебрального оксиметра (rSO2) отражают, в основном, насыщение кислородом гемоглобина венозной крови мозга региона мозга, находящегося в проекции датчика. Следует подчеркнуть разницу между методами церебральной оксиметрии и пульоксиметрии. При использовании последней анализируется не всe излучение, которое прошло через ткани, а только его изменения, связанные с пульсацией кровотока.
Возможности церебральной оксиметрии в настоящее время активно изучаются и выглядят перспективными. В нашей клинике использование этого метода позволило коренным образом изменить взгляды врачей на важность обеспечения повышенной оксигенации артериальной крови при поражениях головного мозга.
Метаболические процессы в мозге в настоящее время изучают не только с помощью оценки потребления кислорода. О метаболизме судят по содержанию лактата, глюкозы, глицерина и глутамата. Определять указанные вещества можно не только в крови яремной вены, но и непосредственно в веществе мозга с помощью специально разработанной техники микродиализа. Диализат интерстициальной жидкости получают при использовании микротрубочек, имплантируемых в исследуемый участок церебральной ткани.
Наибольший интерес вызывает оценка концентрации лактата. Накопление этого метаболита отражает вызванное гипоксией угнетение цикла трикарбоновых кислот и цепочки окислительного фосфорилирования с компенсаторной активацией гликолиза. Оценка уровня глюкозы расширяет возможности детализации нарушений углеводного обмена в мозге. Концентрация глицерина позволяет судить о нарушениях жирового обмена. Оценка уровня глутамата дает информацию об активации нейротоксического механизма церебральных повреждений. Методика микродиализа позволяет получать интересные результаты, но сейчас она находится только в начале своего развития.
