
- •Лабораторный практикум по Электрофизическим методам исследования диэлектриков
- •Введение
- •Тема 1. Приборы, используемые для проведения исследований электротехнических материалов
- •1.1. Мосты переменного тока
- •1.1.1. Мост переменного тока р577
- •1.1.2. Мост переменного тока р5026
- •1.1.3. Мост переменного тока р5058
- •1.1.4. Автоматические мосты переменного тока
- •1.2. Осциллографы
- •1.3. Генераторы
- •Тема 2. Проводимость полупроводников и металлов лабораторная работа № 2.1
- •2.1. Терморезисторы: термисторы и позисторы
- •Подготовка к работе
- •Измерения и обработка результатов
- •Отчетные материалы
- •Лабораторная работа № 2.2
- •2.2. Общие сведения о варисторах
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Подготовка к работе
- •2. Исследование вольтамперной характеристики варистора
- •7. Исследование зависимости сопротивления от температуры
- •Отчетные материалы
- •Лабораторная работа № 2.3
- •2.3. Определение типа носителей в полупроводниках
- •2.3.1. Метод термозонда
- •2.3.2. Метод Холла
- •2.3.3. Определение концентрация и подвижности носителей
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Определение типа носителей с помощью метода термозонда
- •1.1. Подготовка к работе
- •1.2. Определение типа носителей разных кристаллов
- •2. Исследования по методу Холла
- •2.1. Определение типа основных носителей в датчике Холла
- •2.3. Исследование вольтамперной характеристики датчика
- •2.4. Определение микропараметров кристалла датчика Холла
- •2.6. Определение зависимости эдс Холла от величины тока
- •2.9. Определение зависимости эдс Холла величины индукции в
- •Отчетные материалы
- •Тема 3. Поляризация диэлектриков Лабораторная работа № 3.1 "Исследование жидкокристаллических индикаторов"
- •3.1. Теоретические сведения о жк-индикаторах
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Подготовка к измерениям
- •2. Изучение жк-сегментов индикатора
- •4. Исследование зависимости емкости Сn(u)
- •5. Определение зависимости значений Uпор от частоты f
- •6. Определение частоты fкр в зависимости от напряжения
- •7. Определение зависимостей ε(f) и tgδ(f) материала
- •Отчетные материалы
- •Лабораторная работа № 3.2 "Активная сегнетокерамика"
- •3.2. Основные свойства сегнетоэлектриков
- •Подготовка к работе
- •Измерения и обработка материалов
- •1. Испытание 1.
- •2. Испытание 2
- •2.6. Анализ зависимости параметров диэлектрика от температуры
- •Отчетные материалы
- •Лабораторная работа № 3.3 "Исследование свойств радиочастотных кабелей"
- •3.3. Теоретические сведения о радиочастотных кабелях
- •3.3.1. Распространение электромагнитных волн по кабелю
- •3.3.2. Обозначение и строение радиочастотных кабелей
- •Подготовка к работе
- •Измерения и обработка результатов
- •Отчетные материалы
- •Тема 4. Диэлектрические потери Лабораторная работа № 4.1 "Исследование зависимости ε и tg диэлектрика от температуры и частоты"
- •4.1. Методы оценки диэлектрических потерь
- •4.1.1. Схемы замещения реального конденсатора
- •4.1.2. Расчет величины активных потерь в диэлектрике
- •4.1.3. Мост переменного тока р577
- •4.1.4. Зависимость tg от температуры и частоты
- •4.1.5. Зависимость от температуры и частоты
- •Подготовка к работе
- •Измерения и обработка материалов
- •Отчетные материалы
- •Тема 5. Пробой диэлектриков Лабораторная работа № 5.1
- •5.1. Общие сведения о пробое воздуха
- •5.1.1. Влияние различных факторов на пробой воздуха
- •5.1.2. Описание эксперимента
- •Подготовка к работе
- •Измерения и обработка результатов
- •Отчетные материалы
- •Тема 6. Тепловые свойства диэлектриков Лабораторная работа № 6.1 "Исследование тепловых свойств диэлектрических материалов"
- •6.1. Методы оценки тепловых потоков
- •6.1.1. Параметры теплового потока
- •6.1.2. Теплопроводность плоской стенки
- •6.1.3. Теплопроводность цилиндрической стенки
- •6.1.4. Влияние факторов на коэффициент теплопроводности
- •6.1.5. Понятие о нагревостойкости материалов
- •6.1.6. Методы измерения температуры и теплового потока
- •6.1.7. Описание установки
- •Подготовка к работе
- •Измерения и обработка результатов
- •Отчетные материалы
- •Тема 7. Радиокомпоненты Лабораторная работа № 7.4 "Анализ рядов сопротивлений и конденсаторов"
- •7.1. Номинальные параметры резисторов и конденсаторов
- •7.1.1. Ряды сопротивлений и конденсаторов
- •7.1.2. Гистограмма распределения элементов в серии
- •7.1.3. Экспериментальное построение гистограммы выборки
- •7.1.4. Резисторы и конденсаторы для поверхностного монтажа
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Подготовка к исследованиям
- •2. Исследование параметров резисторов
- •3. Исследование параметров конденсаторов
- •4. Анализ параметров резисторов и конденсаторов smd
- •Отчетные материалы
- •Тема 8. МаГнитные материалы Лабораторная работа № 8.1
- •8.1. Магнитные законы и материалы
- •8.1.1. Магнитные законы
- •8.1.2. Расчет магнитного поля с помощью закона полного тока
- •8.1.3. Общая характеристика магнитных материалов
- •8.1.4. Основные свойства ферромагнитных материалов
- •8.1.5. Магнитные цепи
- •8.1.6. Описание установки
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Исследование магнитных свойств соленоидов
- •Отчетные материалы
- •Лабораторная работа № 8.2
- •8.2. Общие сведения об экранировании магнитного поля
- •8.2.1. Электромагнитное экранирование
- •8.2.2. Количественная оценка эффекта экранирования
- •8.2.3 Описание лабораторной установки
- •Подготовка к работе
- •Измерения и обработка результатов
- •1. Подготовка к испытаниям
- •2. Определение зависимости индукции в(h) без экранов
- •3. Определение экспериментальной величины э при различных экранах
- •3.1. Исследование экрана из немагнитного полимерного материала
- •Экспериментальная таблица для каждого из экранов
- •3.7. Исследование экрана из немагнитного металлического материала
- •3.8. Исследование экрана из ферромагнитного материала
- •3.9. Исследование двухслойного экрана из различных материалов
- •Отчетные материалы
- •Тема 9. Оптическая пирометрия Лабораторная работа № 9.1
- •9.1. Модели и методы оптической пирометрии
- •9.1.1. Параметры и характеристики теплового излучения
- •9.1.2. Законы теплового излучения
- •9.1.3. Оценка температуры яркостным пирометром
- •9.1.4. Оценка теплового потока от нагретого тела
- •9.1.5. Схема установки и работа с пирометром оппир-017
- •9.1.6. Расчет температуры с помощью оптического пирометра
- •Подготовка к работе
- •Измерения и обработка результатов Определение яркостной температуры Тя и расчет температуры т
- •Отчетные материалы
- •Рекомендуемая литература Основная
- •Дополнительная
2.3.3. Определение концентрация и подвижности носителей
Концентрация n носителей заряда и их подвижность могут быть определены с помощью схемы измерения, приведенной на рис. 2.5, б.
В равновесии поле Холла компенсирует силу Лоренца
еЕХ = evдрnB. (2.20)
Умножая обе части выражения (2.20) на высоту образца b, получаем, что напряжение UХ (ЭДС Холла) между верхним и нижним электродами равна
UХ = EХb = vдрnBb. (2.21)
Учитывая взаимосвязь между током Iп, плотностью тока jп в полупроводнике, концентрацией носителей заряда n и их дрейфовой скоростью vдрn:
R = U/I = l/S = l/S = l/bd, (2.22)
j = I/S = I/bd, (2.23)
vдрn = nEХ, (2.24)
j = E= ennnE = ennnUп/l, (2.25)
Iп = jbd = enn, (2.26)
получаем, что напряжение Холла равно
UХ = jBb/enn = IпB/ennd, (2.27)
где d – толщина образца.
Подвижность n и концентрация носителей nn заряда могут быть определены, если, например, из эксперимента известны значения напряжения Uп на образце длиной l, индукция В и напряжение Холла UХ.
n = Iпl/ennUпbd= lUХ/bUпB, (2.28)
nn = IпB/edUХ. (2.29)
С учетом приведенных выше соотношений, следует ожидать (покажите самостоятельно), что зависимости Iп(Uп)|B=0, Ux(Iп)|B, Ux(B)|Iп, исследуемые в работе, описываются линейными функциями (рис. 2.5, б - г).
Для практических целей используется коэффициент Холла Rn (или Rр), рассчитываемый по формулам:
Rn = 1/enn (или Rр = 1/eрp), м3/Кл . (2.30)
Эффект Гаусса – явление отклонения заряженных частиц от прямолинейного движения при одновременном действии электрического и магнитного поля, связанное с действие силы Лоренца на электроны или дырки. Вследствие этого изменяется электрическое сопротивление кристалла. Полупроводниковые приборы, действие которых основано на эффекте Гаусса, называются магниторезисторами. Характеристикой магниторезисторов является магнитосопротивление (R/R0), определяемое как
R(B)/R0 = [R(B) – R0]/R0 = C2B2. (2.31)
где R0 – сопротивление образца в отсутствие магнитного поля, С - постоянная.
Анализ гальванотермомагнитных явлений, применение датчиков Холла описано в пособии [1].
Подготовка к работе
Работа относится к темам: ″Проводимость полупроводников″, ″Гальваномагнитные явления″. Предварительно необходимо выполнить задания контрольной работы (РГЗ).
В "заготовке" к работе следует:
– описать методы термозонда и Холла; зарисовать схемы испытаний;
– выписать формулы, на основе которых определяются подвижность и концентрация носителей;
– используя табличные данные, записать значения ni и для собственных кристаллов германия и кремния при 300 К (табл. 2.5).
– изучить и зарисовать строение датчика Холла;
– описать теоретические зависимости Iп(Uп), Ux(Iп)|B, Ux(B)|Iп датчика;
– изучить вопросы применения датчиков Холла;
– изучить мнемосхемы исследования эффекта Холла и термозонда.
Таблица 2.5
-
Материал
Ge
Si
ni, м–3
?
?
pi, м–3
?
?
n, м2/Вс
?
?
p, м2/Вс
?
?