
- •Толстой м.І., Рева м.В., Степанюк в.П., Сухорада а.В., Гожик а.П. Загальний курс геофізичних методів розвідки
- •Передмова
- •Глава 1
- •Редукції й аномалії сили тяжіння
- •1.3 Апаратура і методи вимірювання сили тяжіння
- •1.4. Методика гравіметричних досліджень
- •1.5 Інтерпретація даних гравірозвідки
- •Література
- •Питання для самоконтролю
- •Глава 2 магнітна розвідка
- •2.1 Магнітне поле Землі і його параметри
- •2.2 Методи та прилади для вимірювання елементів геомагнітного поля
- •2.3 Методика магніторозвідувальних робіт
- •2.4 Інтерпретація даних магніторозвідки
- •Література
- •Питання для самоконтролю
- •Глава 3 електрозвідка Вступ
- •3.1 Геоелектричний розріз
- •3.2 Електричні та електромагнітні поля
- •3.3 Класифікація методів електророзвідки
- •3.4 Електророзвідувальна апаратура
- •3.5 Методи електророзвідки на постійному струмі
- •3.6 Поляризаційні (електрохімічні) методи електророзвідки
- •3.7 Магнітотелуричні методи
- •3.8 Низькочастотні методи електророзвідки з контрольованими джерелами
- •3.9. Високочастотні методи електророзвідки
- •Література
- •Питання для самоконтролю
- •Глава 4 сейсмічна розвідка
- •4.1 Фізико-геологічні основи сейсморозвідки
- •4.2 Сейсморозвідувальна апаратура і обладнання
- •4.3 Методика польових робіт
- •4.4 Обробка і інтерпретація сейсмічних даних
- •Література
- •Питання для самоконтролю
- •Глава 5 ядерна геофізика
- •5.1 Фізичні основи радіометрії
- •5.2 Природа і властивості радіоактивних випромінювань
- •5.3 Радіоактивність гірських порід
- •5.4 Методи вимірювання радіоактивності
- •5.5 Польові радіометричні методи
- •5.6 Методи ядерної геофізики
- •5.7 Польові ядерно-фізичні методи пошуків
- •Література
- •Питання для самоконтролю
- •Глава 6 терморозвідка
- •6.1 Фізико-геологічні основи терморозвідки
- •6.1.1 Теплове поле Землі
- •6.1.2 Механізми теплопереносу
- •6.2 Теплові і оптичні властивості порід
- •6.3 Засоби вивчення теплового поля
- •6.4 Основні методи терморозвідки і приклади їх застосування
- •6.4.1 Радіотеплові і інфрачервоні зйомки
- •6.4.2 Регіональна терморозвідка
- •6.4.3 Терморозвідка в акваторіях
- •6.4.4 Локальні терморозвідувальні дослідження
- •Література
- •Питання для самоконтролю
- •Глава 7 геофізичні дослідження свердловин
- •7.1 Класифікація методів
- •Термічні методи поділяються на методи природного теплового поля та методи штучного теплового поля.
- •7.2 Технічні засоби
- •7.3 Електричні методи дослідження свердловин
- •7.3.1 Метод потенціалів власної поляризації (пс)
- •7.3.2 Методи уявного опору (уо)
- •7.3.2.1 Стандартна електрометрія
- •7.3.2.2 Форми кривих методу опору
- •7.3.2.3 Бокове електричне зондування (без)
- •7.3.2.4 Метод мікрозондів
- •7.3.2.5 Методи опору екранованого заземлення (боковий метод дослідження свердловин)
- •7.3.3 Індукційний метод
- •7.3.4 Метод потенціалів викликаної поляризації гірських порід (вп)
- •7.4 Радіоактивні та ядерно-геофізичні методи
- •7.4.1 Методи природної гама-активності гірських порід
- •7.4.2 Методи розсіяного гама-випромінювання
- •7.4.3 Нейтронні методи
- •7.4.4 Метод наведеної активності (мна)
- •7.5 Акустичний метод
- •7.6 Магнітний метод
- •Розрізняють такі магнітні методи дослідження розрізів свердловин: метод природного магнітного поля, метод магнітної сприйнятливості.
- •7.7 Термічні методи дослідження свердловин
- •7.8 Геохімічні дослідження
- •7.9 Комплексування геофізичних досліджень у свердловинах
- •7.10 Прострілювальні та вибухові роботи у свердловинах
- •Література
- •Питання для самоконтролю
- •Частина друга Методи підвищення ефективності геофізичних досліджень
- •Глава 8
- •Методи петрофізичних досліджень
- •8.1 Петрощільнісні методи
- •8.1.1 Визначення щільнісних властивостей зразків
- •8.1.2 Густина хімічних елементів і мінералів
- •8.1.3 Щільнісні властивості гірських порід
- •8.2 Ємнісні методи
- •8.2.1 Визначення ємнісних властивостей зразків
- •8.2.2 Пористість і проникність мінералів і порід
- •8.3 Теплові властивості мінералів і порід
- •8.4 Петроакустичні методи
- •8.4.1 Визначення пружних властивостей зразків
- •8.4.2 Швидкість пружних хвиль і пружні модулі хімічних елементів та мінералів
- •8.4.3 Пружність гірських порід
- •8.5 Електричні властивості
- •8.5.1 Методи вивчення електричних властивостей зразків
- •8.5.2 Електричні властивості хімічних елементів і мінералів
- •8.5.3 Електричні властивості гірських порід
- •8.6 Петромагнітні методи
- •8.6.1 Визначення магнітних властивостей зразків
- •8.6.2 Магнітні властивості мінералів
- •8.6.3 Магнітні властивості гірських порід
- •8.7 Радіоактивність гірських порід
- •8.7.1 Визначення радіоактивності зразків
- •8.7.2 Радіоактивність мінералів і гірських порід
- •8.8. Відтворення палеогеодинамічних умов формування кристалічних утворень за даними аналізу їх петрофізичних характеристик
- •Література
- •Питання для самоконтролю
- •Глава 9 геохімічні методи пошуків корисних копалин
- •2.1 Літогеохімічні методи
- •2.1.1 Розподіл хімічних елементів в гірських породах
- •9.1.2 Кількісні особливості розподілу хімічних елементів в породах
- •9.1.3 Опробування кристалічних порід
- •9.1.4 Первинні геохімічні ореоли
- •9.1.5 Пошуки вторинних ореолів і потоків розсіювання
- •9.1.5.1 Ландшафтно-геохімічні дослідження
- •9.1.5.2 Пошуки вторинних ореолів розсіювання
- •9.1.5.3 Пошуки потоків розсіювання
- •9.2 Гідрогеохімічний метод пошуків
- •9.3 Біогеохімічні методи пошуків
- •Література Основна:
- •Питання для самоконтроля
- •Глава 10 комплексування геофізичних досліджень
- •10.1 Принципи комплексування геофізичних методів
- •10.2 Локальне прогнозування і прямі пошуки родовищ корисних копалин
- •10.3 Комплексування геофізичних методів при регіональних і геолого-зйомочних роботах
- •10.4 Комплексування геофізичних методів при пошуках і розвідці рудних родовищ
- •10.5 Комплексування геофізичних методів при пошуках і розвідці нерудних корисних копалин
- •10.6 Комплексування геофізичних методів при пошуках і розвідці твердих горючих корисних копалин
- •10.7 Комплексування геофізичних методів при пошуках і розвідці нафтових і газових родовищ
- •10.8 Локальне прогнозування покладів нафти і газу геофізичними методами
- •10.9 Використання геофізичних методів поза межами геології
- •Література
- •Питання для самопідготовки
5.7 Польові ядерно-фізичні методи пошуків
Наведені вище ядерно-фізичні методи з успіхом застосовуються не тільки у науково-дослідних, лабораторно-аналітичних і каротажних дослідженнях але і в практиці польових пошукових робіт, особливо при пошуках геохімічних аномалій, ореолів і потоків розсіювання рудних родовищ, зокрема – рідкіснометалевих. До цих методів відносяться: нейтронно-активаційний, фотонейтронний, нейтронно-абсорбційний, рентгенорадіометричний методи.
Нейтронно-активаційний
фторометричний метод
пошуків заснований на використанні
реакції нейтронів з енергією 36 МеВ
з ядрами 19F,
в наслідок якої утворюється ізотоп
.
Перетин цієї реакції 0,15 барна. Ізотоп
16N
випромінює
гамма-кванти з енергією 6,14 МеВ із
періодом напіврозпаду 7,3 с і
перетворюється у стабільний ізотоп
16О.
Індикація фтору здійснюється завдяки
реєстрації гамма-квантів з наведеною
енергією.
Фтор є індикаторним елементом багатьох цінних металів, завдяки створенню з ними з’єднань. Його активність проявляється, перш за все, завдяки високій окислювальній здатності. Крім того, іони фтору здатні заміщувати іони гідроксила в кристалічних гратках багатьох мінералів. Важливим також є його здатність до утворення комплексних сполук у цілому ряді природних процесів. Це стосується халькофільних (Сu, Zn, Hg, і ін), а також рідкісних елементів (Zr, Nb, Ta, Mo, W, U, рідкісні землі). Характерна значна стійкість багатьох комплексних з’єднань фтору в розчинах, в умовах високих температур (гідротерми, магматичні утворення). Все це створює сприятливі умови для створення навколо рудопроявів багатьох родовищ корисних копалин ореолів розсіювання фтору і інших рудоутворюючих елементів.
Пошукові роботи методом нейтронно-активаційних вимірювань здійснюються за точковими замірам. На кожній точці спочатку вимірюється фонове значення гамма-поля (Іф). Потім до земної поверхні прикладається джерело нейтронів (полоній-берілієве з активністю 510 Ки) і проводиться активація породи протягом 30 с. Потім джерело забирають і проводиться вимір активності Іа=І–Іф протягом 15 с польовим гамма-спектрометром типа СП-3 або СП-4. Вміст фтору за даними вимірів пропорційний Іа і визначається з наслідків еталонування . В межах 0,055 % між вмістом F і Іа існує лінійна залежність. Таким чином, на кожній точці виконується наступна послідовність операцій: 30 с – опромінювання, 5 с – пауза, 15 с – вимір. Проводять 2-3 заміри. Поріг чутливості дорівнює 0,05 % F, тобто нижче кларку (0,066 %).
Польова нейтронно-активаційна фторометрія може застосовуватися для оцінки перспектив і розбраковки гравітаційних і електрометричних аномалій.
Фотонейтронні берилометричні пошуки. Берилій, як і фтор, є індикаторним елементом для значної кількості, головним чином, рідкіснометалевих корисних копалин, до того ж, він і сам є цінною сировиною. Його концентрація пов’язана з пізніми стадіями магматичної диференціації і з постмагматичними процесами. Найбільш високі його концентрації характерні для родовищ пегматитового типу. Крім того, до промислових відносяться також деякі метасоматичні і гідротермальні родовища. При цьому для кожного генетичного типу родовищ характерні специфічні асоціації з різними хімічними елементами. Так, для пегматитів - з Li, Cs, Nb, Ta, U, Th, Zr, з рідкіснометалевими елементами, в грейзенах – з W, Sn, в скарнах – з Mo, W, Cu, Zn, Pb. Ці елементи, як і берилій, створюють навколо родовищ значні ореоли розсіювання, що дозволяє використовувати їх, як індикатори глибокозалягаючих родовищ. Особливо це стосується берилія. Можливість його індикації на рівні нижчекларкового вмісту за допомогою ядерно-фізичного метода заснована, по-перше, на його моноізотопному характері (9Ве), а по-друге, на пороговій енергії зв’язку одного з нейтронів з ядром (1,67 МеВ). Завдяки цьому, під дією гамма-квантів з енергією вище порогової відбувається розщеплення ядра 9Ве із випромінюванням нейтрона (фотонейтронна реакція, або ядерний фотоефект). Енергія цих нейтронів 0,02 МеВ. Їх кількість прямо пропорційна щільності потоку гамма-квантів і вмісту берилію у породі чи мінералі Nn=KСве, де К – коефіцієнт, який визначається експериментально, як кількість імпульсів, що реєструються за 1 хв. від вмісту Ве в 1 %.
Джерелом гамма-квантів слугує 124Sb, датчиком – реєстратор нейтронів. Поріг чутливості біля 0,001 %. Існують польові, лабораторні, автомобільні, свердловинні берилометри.
Рентгенорадіометричний метод. Метод набув досить широкого поширення при пошукових і розвідочних роботах завдяки можливості здійснювати експресне вивчення широкого кола хімічних елементів безпосередньо в умовах природного залягання порід і руд.
Він заснований на збудженні і вимірі флюорисцентного рентгенівського випромінювання К-або L-ліній хімічних елементів в наслідок фотопоглинання ними гама-квантів радіоізотопних джерел з енергією, як правило, меншою 150200 кеВ, тобто в енергетичних межах фотоефекта (рис. 5.11).
При взаємодії з гама-квантами атом втрачає свої К- чи L-електорони, що приводить до іонізації цих електронних орбіт. Майже миттєво ці звільнені орбіти заповнюються електронами з більш віддалених від ядра орбіт. При цьому надлишок енергії цього переходу звільняється у вигляді квантованого характеристичного рентгенівського випромінювання. Енергія цих квантованих станів (серій) виключно специфічна для кожного елемента. Якщо їх вивчати за допомогою -спектрометра, то можливо мати уяву про речовинний (елементний) стан об’єкта, який вивчається. Зараз створена портативна високочутлива рентгенівська кристал-дифракційна спектрометрична апаратура типа СПАРК, 12- канальний РКР-2, УДД і ін.
|
Рисунок 5.11 - Блок-схема вимірювання при рентгенорадіометричному аналізі
1 – -випромінювання; 2 – приймач-аналізатор; 3 – сцинтиляційний спектрометр; 4 – вторинне характеристичне випромінювання; 5 – проба; 6 - свинцевий екран; Д – джерело збудження