- •Азот в стали, растворимость азота в железе, влияние азота на свойства стали, способы удаления азота из металла, легирование стали азотом
- •Вакуумирование стали. Задачи, решаемые при вакуумировании. Типы и конструкции вакууматоров, преимущества и недостатки различных типов вакууматоров
- •4.Вакуумирование в струе.
- •Вакуумно- индукционная плавка.
- •Вдп (вакуумно-дуговой переплав)
- •Варианты кислородно-конвертерного процесса
- •Влияние вакуумирования на качество готового металла
- •Внепечная обработка стали. Цели и методы.
- •Водород в стали, влияние водорода на свойства продукции, источники получения водорода в металле, способы получения стали с низким содержанием водорода
- •Выплавка стали в основной дуговой электропечи. Основные периоды плавки, их задачи.
- •Выплавка стали в основной дуговой электропечи. Производство стали с использованием металлизованного сырья.
- •Десульфурация стали с использованием синтетических шлаков, твердых и порошкообразных смесей.
- •Десульфурация стали, методы десульфурации. Методы Получения стали сверхнизким содержанием серы.
- •Дефосфорация стали. Основные факторы, влияющие, на дефосфорацию стали. Дефосфорация высоколегированных расплавов.
- •Комплексная обработка жидкой стали в ковше.
- •Комплексное раскисление стали – физико-химическое обоснование.
- •Конвертерное производство - изменение состава и температуры металла, шлака и отходящих газов по ходу продувки в конвертере.
- •Конвертерное производство стали. Нормативный цикл конвертерной плавки.
- •Неметаллические включения в стали, классификация неметаллических включений, влияние не металлических включений на свойство продукции, и способы их удаления из металла.
- •Неметаллические включения в стали, классификация неметаллических включений.
- •Непрерывная разливка стали. Виды машин непрерывного литья заготовок.
- •Непрерывная разливка стали. Технология и преимущества непрерывной разливки. Виды машин непрерывного литья заготовок.
- •Непрерывные сталеплавильные процессы: варианты технологических схем и применяемого оборудования. Современное состояние и перспективы развития.
- •Основные показатели, определяющие металлургическое качество стали и способы их достижения.
- •24. Основные реакции сталеплавильного производства - шлакообразование. Состав и свойства сталеплавильных шлаков и их роль в технологическом процессе.
- •Открытая-инд.Печь. Назначение и конструкции ип,преимущ-ва и недостатки. Технол.Схема выплавки стали.
- •Плазенно-дуговой переплав. Назначение и конструкции печей пдп, преимущества и недостатки. Технологическая схема выплавки стали.
- •27. Применение нейтральных газов для обработки жидкой стали в ковше.
- •28. Растворимость кислорода в стали и предельная растворимость кислорода в расплаве, способы получения стали с низким содержанием кислорода.
- •29. Современные тенденции в конструировании дуговых сталеплавильных печей.
- •30. Способы отсечки шлака по ходу выпуска металла из сталеплавильного агрегата.
- •31. Способы разливки стали. Сравнение показателей разливки сверху и сифоном.
- •32. Структура стального слитка - явление усадки.
- •33. Технология выплавки углеродистой и низколегированной стали в современных дсп. Способы интенсификации процесса выплавки в дсп.
- •35. Требования к шихтовым материалам и технологии, используемые для подготовки их к плавке.
- •36. Устройство дуговых электропечей.
- •37. Электроды для дсп. Рабочие свойства, расход электродов, факторы, влияющие на расход электродов.
- •38. Электронно-лучевой переплав. Назначение и конструкции печей элп, преимущества и недостатки. Технологическая схема выплавки стали.
- •Переплавляемый слиток. 2 - кольцевой катод..3 - фокусирующий электрод; 4 - кристаллизатор: 5 - ванна жидкого металла
- •39. Электросталеплавильное производство. Классификация способов производства стали с использованием электрической энергии.
- •40. Электрошлаковый переплав. Назначение и конструкции печей эшп, преимущества и недостатки. Технологическая схема выплавки стали.
Вакуумирование стали. Задачи, решаемые при вакуумировании. Типы и конструкции вакууматоров, преимущества и недостатки различных типов вакууматоров
ВАКУУМИРОВАНИЕ Удаление газа, пара или па-рогаз. среды из сосудов или аппаратов с целью получения в них давления ниже атмосферного.
Внепечное вакуумирование жидкой стали является эффективным способом снижения содержания газов и неметаллических включений, а также эффективным способом улучшения механических свойств сталей ряда марок.
Задачи процесса:
Такая обработка, применявшаяся вначале главным образом для снижения поражения стали флокеночувствительных марок флокенами вследствие удаления водорода, а в последнее время в связи с усовершенствованием конструкций установок, методов вакуумирования и технологии плавки, получила распространение, так как позволила уменьшать содержание в металле и других газов (кислорода и отчасти азота).
В целом, при обработке металла вакуумом: 1) уменьшается содержание растворенных в металле водорода и азота; 2) снижается содержание растворенного в металле кислорода; 3) уменьшается содержание в металле неметаллических включений; 4) в результате выделения большого количества газовых пузырей металл перемешивается, становится более однородным, выравнивается его состав и температура; 5) создается возможность получения стали с очень низким содержанием углерода; 6) в результате рафинирования металла вакуумная обработка существенно улучшает литейно-технологические свойства стали.
Основные способы, получившие промышленное применение, можно разделить на три группы:
вакуумирование всей плавки в течение всего времени обработки;
вакуумирование непрерывно в струе при протекании металла через вакуумную камеру;
вакуумирование металла отдельными порциями вне ковша в специальной камере.
1.Вакуумирование в ковше - вакуумирование жидкого металла в ковше, помещ. в вакуумную камеру или закрытом герметичной крышкой, под к-рой создается разрежение (см. рис.). В. стали проводят в разливочных ковшах с шиберными устройствами и запасом 500—700 мм по высоте, к-рые футеруют осн. или высокоглиноземистыми огнеупорами и нагревают перед выпуском плавки до 1100-1200 °С.
Ковш со сталью помешают в вакуумную камеру, организуют перемешивание металла инертным газом, раскислители вводят в ковш из бункера, также находящегося в вакуумной камере.
С понижением общего давления в вакуумной камере начинается процесс дегазации стали, сопровождающейся перемешиванием металла и шлака выделяющимися пузырями газа.
Камера для вакуумирования представляет собой стальной цилиндр , устанавливаемый в бетонированном приямке в разливочном пролете. Сверху камера закрывается крышкой, укрепленной на петлях и поднимаемой при помощи лебедки. На некоторых установках крышка снимается краном или откатывается в сторону по рельсам.
Недостатком вакуумирования в ковше является невысокая эффективность метода при вакуумировании относительно больших масс металла (> 50 т) и неравномерность состава стали в ковше после ввода раскислителей и легирующих вследствие слабого перемешивания всей массы металла. Этого можно избежать в том случае, когда предусматривается продувка стали в ковше интертным газом или электромагнитное перемешивание.
2. Вакуумирование порционное [DH] — в. порций жидкой стали, периодич. засасываемых в вакуумную камеру из ковша через футеров, патрубок -10 % от массы металла в ковше), погруженный в расплав, и после кратковрем. выдержки сливаемых по тому же патрубку в тот же ковш (см. рис.).Продолж-ть цикла обычно 25— 30 с. Внаиб, простом технология, варианте достаточно трехкратного прохождения металла через камеру. Вакуумная камера имеет в верхней части графитовый нагреватель для снижения потерь тепла металлом во время обработки. Она оборудована также необход, техноло-гич. отверстиями.
Порционный способ внепечноговакуумирования, разработанный фирмой "Dortmund - HörderHüttenunion", ФРГ, обычно называют способом DH.
Так, например, количество циклов вакуумирования при обработке металла с целью удаления из него водорода и сокращения продолжительности противофлокенной обработки проката должна составлять не менее:
-при обработке раскисленного металла - 70 циклов;
-при обработке нераскисленного металла - 50 циклов.
Остаточное давление в вакуум-камере создаваемое многоступенчатым пароэжекторным насосом к концу дегазации чаще всего составляет 0,5 мм рт. ст. Футеровка вакуумной камеры перед вакуумированием нагревается системой электроподогрева или газокислородными горелками до 1500...1550 °С, что сокращает потерю тепла металлом. За время вакуумирования его температура снижается на 10...25 °С.
Есть мнение, что порционное вакуумирование является наиболее эффективным средством удаления водорода (по некоторым оценкам, эффективность удаления водорода вдвое, а азота на 60 %, превышают соответствующие показатели циркуляционныхвакууматоров).
3.Вакуумирование циркуляционное. Два патрубка вакуумной камеры погружают в сталь; при вакуумировании порция металла засасывается в вакуумную камеру (рис. 2 правая схема). В один из патрубков начинают подавать инертный газ, в результате чего сталь в этом патрубке направляется вверх, в вакуум-камеру, а по другому - стекает вниз, в ковш. Происходит циркуляция металла через вакуум-камеру. Способ этот называют циркуляционным вакуумированием стали (или RH-процессом — по первым буквам предприятия Ruhrstahl-Hereus, ФРГ, где процесс был осуществлен впервые).
Рисунок 3. Установка поточноговакуумирования
стали: 1 — сталеразливочный ковш; 2 — вакуумная камера; 3 — промежуточный ковш;
4 — кристаллизатор
Металлургические преимущества системы RH:
- оптимальное обезуглероживание до концентрации ниже 15 ppm;
-возможность работы при различном исходном содержании углерода;
-возможность использования более дешевых высокоуглеродистых легирующих добавок;
-возможность химического нагрева расплава;
-низкое конечное содержание растворенных газов;
-повышение общей степени чистоты стали;
-достижение точных плановых показателей состава.
