
- •Экзаменационные ответы на вопросы по физиологии.
- •Вопрос 1. Введение в физиологию
- •Вопрос 2. Невризм. Методы физиологического исследования. Функциональные системы
- •Вопрос 3. Возбудимые ткани
- •Вопрос 4. Биоэлектрические явления
- •Вопрос 5. Значение ионов в формировании мембранного потенциала
- •Вопрос 6. Активные силы в формировании мембранного потенциала. Потенциал действия
- •Вопрос 7. Натриевая природа потенциала действия. Фазные изменения возбудимости
- •Вопрос 8. Физиология нервных волокон
- •Вопрос 9. Морфология синапсов
- •Вопрос 10. Физиология синапсисов
- •Вопрос 14. Строение и функции центральной нервной системы
- •Вопрос 15. Нейрон
- •Вопрос 16. Рефлексы
- •Вопрос 18. Нервные центры
- •Вопрос 19. Координированная деятельность центральной нервной системы. Торможение в центральной нервн
- •Вопрос 20. Понятие о торможении
- •Вопрос 23. Строение и функции ретикулярной формации
- •Вопрос 24. Влияние ретикулярной формации на спинной мозг и кору головного мозга. Значение данных о физиологии ретикулярной формации.
- •Вопрос 25. Промежуточный мозг. Строение таламуса и гипоталамуса
- •Вопрос 26. Функциональные особенности гипоталамуса
- •Вопрос 28. Лимбическая система
- •Вопрос 29. Особенности строения и функции коры головного мозга
- •Вопрос 30. Локализация функций в коре больших полушарий головного мозга
- •Вопрос 32. Условные рефлексы
- •Вопрос 34. Классификация и значение условных рефлексов
- •Вопрос 35. Торможение условных рефлексов. Динамический стереотип
- •Вопрос 36. Учение павлова о типах нервных систем
- •Вопрос 38. Особенности вегетативной нервной системы
- •Вопрос 39. Отделы вегетативной нервной системы
- •Вопрос 40. Учение о медиаторах нервной системы
- •Вопрос 42. Дофамин-, серотонин-, гистамин-, пурин-, гамКергические нейроны нервной системы. Пресинаптические рецепторы.
- •Вопрос 46. Физиология сердечно-сосудистой системы
- •Вопрос 48. Морфологические и физиологические особенности миокарда
- •Вопрос 54. Рефлекторная и гуморальная регуляция сердечной деятельности
- •Вопрос 62. Аппарат внешнего дыхания
- •Вопрос 63. Обеспечивающие дыхание механизмы
- •Вопрос 64. Физиология крови
- •Вопрос 65. Свойства и функции крови. Состав плазмы крови
- •Вопрос 66. Состав плазмы крови: безазотистые органические вещества, ферменты, неорганические вещества
- •Вопрос 67. Современные представления о групповой принадлежности крови
- •Вопрос 68. Иммунологический конфликт в системе аво. Резус-система
- •Вопрос 69. Факторы совместимости крови
- •Вопрос 70. Физиология системы свертывания крови
- •Вопрос 71. Фибринолитическая система организма
- •Вопрос 76. Регуляция деятельности дыхательного центра
- •Вопрос 77. Физиология пищеварения
- •Вопрос 88. Пищевой центр. Физиологическая сущность голода и насыщения
Вопрос 8. Физиология нервных волокон
1.Физиологические свойства и функциональная значимость нервных волокон Нервные волокна имеют самую высокую возбудимость, самую высокую скорость проведения возбуждения, самый короткий рефрактерный период, высокую лабильность. Это обеспечивается высоким уровнем обменных процессов и низкой величиной мембранного потенциала. Функция: проведение нервных импульсов от рецепторов к центральной нервной системе и обратно. 2. Особенности строения и виды нервных волокон Нервное волокно - аксон - покрыт клеточной мембраной. Выделяют 2 вида нервных волокон. Безмиелиновые нервные волокна - один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении. Миелиновые нервные волокна - покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов. Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы). 3. Механизм проведения возбуждения по нервному волокну 1885 г. - Л. Герман - между возбужденными и невозбужденными участками нервного волокна возникают круговые токи. При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности. Доказательство наличия круговых токов: нервное волокно помещают в раствор NaCl и регистрируют скорость проведения возбуждения. Затем нервное волокно помещают в масло (повышается сопротивление) - скорость проведения уменьшается на 30 %. После этого нервное волокно оставляют на воздухе - скорость проведения возбуждения уменьшается на 50 %. Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам: 1) миелиновые волокна - имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты; 2) безмиелиновые волокна - поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны. Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения. 4. Классификация нервных волокон Нервные волокна классифицируются по: длительности потенциала действия; строению (диаметру) волокна; скорости проведения возбуждения. Выделяют следующие группы нервных волокон: группа А (альфа, бета, гамма, дельта) - самый короткий потенциал действия, самая толстая миелиновая оболочка, самая высокая скорость проведения возбуждения; группа В - миелиновая оболочка менее выражена; группа С - без миелиновой оболочки.