- •5. Катализ: гомогенный и гетерогенный. Энергетический профиль каталитической реакции.
- •6. Химическое равновесие. Обратимые и необратимые по направлению реакции. Константа химического равновесия. Прогнозирование смещения химического равновесия.
- •8. Классификация дисперсных систем: по степени дисперсности, по агрегатному состоянию фаз, по силе межмолекулярного взаимодействия между дисперсной фазой и дисперсионной средой.
- •10. Осмос, осмотическое давление. Закон Вант-Гоффа. Осмоляльность и осмолярность биологических жидкостей.
- •11. Понятие о коллоидных растворах. Методы получения и очистки коллоидных растворов. Строение мицеллы. Коагуляция, порог коагуляции.
- •12. Факторы устойчивости коллоидных растворов. Механизм возникновения электрического заряда коллоидной частицы. Мицелла. Ядро. Гранула.
- •13. Ионное произведение воды. Методы определения pH растворов. Индикаторы.
- •Методы определения значения pH
- •14. Протолитические реакции. Понятия о кислотах и основаниях. Амфолиты. Ионизация слабых кислот и оснований. Константа кислотности и основности.
- •15. Буферные системы: определение, классификация, уравнение Гендерсона-Гассельбаха. Механизм действия буферных систем. Зона буферного действия и буферная емкость
- •16. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая, белковая. Взаимодействие буферных систем организма человека.
- •17. Понятие о кислотно-основном состоянии организма. Виды нарушений кос и способы коррекции.
- •18. Типы окислительно-восстановительных реакций, протекающих в организме.
- •19. Физико-химические принципы транспорта электронов в электронотранспортной цепи митохондрий.
- •20. Классификация комплексных соединений, их строение. Представление о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины).
- •21. Типы изомерии органических соединений.
- •1.Структурная изомерия.
- •2.Пространственная изомерия.
- •22. Многоатомные спирты: этиленгликоль, глицерин, инозит. Их структура и функции. Образование сложных эфиров с неорганическими кислотами (нитроглицерин, фосфаты глицерина, инозита).
- •24. Аминофенолы: дофамин, норадреналин, адреналин. Понятие о биологической роли этих соединений и их производных.
- •26. Насыщенные дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая. Соли щавелевой кислоты- оксалаты.
- •27. Ненасыщенные дикарбоновые кислоты: фумаровая, малеиновая, их пространственное строение. Превращение янтарной кислоты в фумаровую как пример биологической реакции дегидрирования.
- •30. Классификация углеводов (моно-, олиго-, полисахариды). Моносахариды, их классификация (альдозы, кетозы).
- •31. Изомерия моносахаридов: стереоизомерия, цикло-оксо-таутомерия, а- и в-аномерия на примере глюкозы.
- •34. Дисахариды: классификация (редуцирующие- мальтоза, целлобиоза, лактоза) и нередуцирующие (сахароза, трегалоза). Строение, химические свойства: гидролиз, окисление редуцирующих сахаров.
- •35. Классификация полисахаридов (гомо- и гетерополисахариды). Примеры.
- •36. Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, декстран, целлюлоза. Структура, типы, химических связей, гидролиз.
- •37. Липиды: определение, классификация.
- •39. Простые (нейтральные липиды) – триглицериды. Номеклатура, состав, строение, их гидролиз.
- •40. Фосфатидная кислота. Её образование и гидролиз.
- •41.Фосфолипиды: фосфатидилсерины, фосфатидилэтаноламины и фосфатидилхолин (лецитины) – реакция гидролиза.
- •42.Стероиды: структура холестерина, желчных кислот.
- •43.Липидный состав мембран. Амфифильная природа мембранных липидов.
- •44.Классификация нуклеиновых кислот.
- •45.Пиримидиновые и пуриновые основания. Ароматические свойства. Лактим-тактамная таутометрия.
- •46.Нуклеозиды: номенклатура, строение, гидролиз.
- •47. Нуклеотиды: номенклатура, строение, гидролиз
- •48.Первичная структура нуклеиновых кислот: химический состав рнк и днк, типы химических связей.
- •49.Вторичная структура днк. Роль водородных связей в формировании вторичной структуры. Комплиментарные пары. Третичная структура днк.
- •50.Природные аминокислоты.Номенклатура и стереоизомерия.
- •51.Классификация аминокислот по: строению радикала, кислотно-основным свойствам.
- •52.Кислотно-основные свойства аминокислот, биполярная структура, изоэлектрическая точка.
- •53.Химические свойства α-аминокислот как гетерофункциональных соединений: реакции этерификации, ацилирования, алкилирования, образование иминов, реакция комплексообразования.
- •5,4. Биологические важные реакции α-аминокислот
- •55. Первичная структура белка. Строение пептидной группы. Гидролиз пептидов.
- •56. Вторичная, третичная, четвертичная структуры белка. Химические связи, участвующие в образовании структур белка. Биологическая роль структурной организации белковых молекул.
- •59. Миоглобин и гемоглобин: строение и функции.
- •60. Конформационные изменения и кооперативные взаимодействия субъединиц гемоглобина (кооперативный эффект). Эффект Бора. Роль 2,3 – бисфосфоглицерата.
- •61. Особенности ферментов как белковых катализаторов. Активный центр, кофакторы и коферменты. Механизм действия ферментов. Этапы ферментативного катализа.
- •62. Классификация и номенклатура ферментов.
- •64. Зависимость активности ферментов от температуры и pH среды. Единицы активности ферментов.
- •65. Специфичность действия ферментов.
- •66. Аллостерические ферменты: структура, аллостерический и регуляторный центры. Гомо- и гетеротропные эффекты.
- •67. Ингибирование активности ферментов: обратимое, необратимое, конкурентное, неконкурентное.
- •I. Обратимое ингибирование
- •68. Индукция и репрессия синтеза ферментов. Компартментация ферментов. (Нихуя не нашел толком. Говно, а не ответ)
- •69. Виды регуляции ферементов: ассоциация-диссоциация.
- •70. Ковалентная модификация ферментов: ограниченный протеолиз проферментов, фосфорилирование и дефосфорилирование.
- •71. Применение ферментов и их ингибиторов в медицине (диагностика, лечение). Энзимопатии.
8. Классификация дисперсных систем: по степени дисперсности, по агрегатному состоянию фаз, по силе межмолекулярного взаимодействия между дисперсной фазой и дисперсионной средой.
По степени дисперсности:
Классификация дисперсных систем по агрегатным состояниям фаз:
дисперсионная среда |
дисперсионная фаза |
примеры дисперсных систем |
твердая |
твердая |
Рубиновое стекло; пигментированные волокна; сплавы; рисунок на ткани, нанесенный методом пигментной печати |
твердая |
жидкая |
Жемчуг, вода в граните, вода в бетоне, остаточный мономер в полимерно-мономерных частицах |
твердая |
газообразная |
Газовые включения в различных твердых телах: пенобетоны, замороженные пены, пемза, вулканическая лава, полимерные пены, пенополиуретан |
жидкая |
твердая |
Суспензии, краски, пасты, золи, латексы |
жидкая |
жидкая |
Эмульсии: молоко, нефть, сливочное масло, маргарин, замасливатели волокон
|
жидкая |
газообразная |
Пены, в том числе для пожаротушения и пенных технологий замасливания волокон, беления и колорирования текстильных материалов |
газообразная |
твердая |
Дымы, космическая пыль, аэрозоли |
газообразная |
жидкая |
Туманы, газы в момент сжижения |
газообразная |
газообразная |
Коллоидная система не образуется |
9. Особенности растворения ВМС: механизм набухания и растворения. Зависимость величины набухания от различных факторов. Изоэлектрическая точка и методы ее определения. Устойчивость растворов биополимеров. Высаливание биополимера из раствора. Застудневание растворов ВМС. Свойства студней: синерезис и тиксотропия.
Процесс растворения высокомолекулярных соединений связан со стадией набухания и увеличением их массы и объема.
Степень и скорость набухания полимеров зависит от ряда факторов: температуры, давления, величины pH среды, присутствия веществ, в особенности электролитов, степени измельченности полимера и «возраста» полимера.
Скорость набухания с повышением температуры растет, а степень предельного набухания уменьшается, если процесс набухания сопровождается выделением тепла.
С ростом внешнего давления степень набухания всегда повышается, что вытекает из принципа Ле-Шателье, если учитывать, что суммарный объем системы из растворителя и растворяемого вещества при набухании уменьшается.
Влияние pH среды на набухание хорошо изучено для белков и целлюлозы: минимум набухания лежит в области изоэлектрической точки (например для желатины при pH=4,7), по ту и другую сторону, от которой степень набухания возрастает и, достигнув максимумов, вновь начинает уменьшаться.
Изоэлектрическая точка (pI) — кислотность среды (pH), при которой определённая молекула или поверхность не несёт электрического заряда.
Величина изоэлектрической точки определяется величинами констант диссоциации кислотной и основной фракций:
Основным фактором термодинамической устойчивости растворов биополимеров (ВМС) является их высокая гидрофильность, которая обусловлена наличием таких гидрофильных групп, как – NH2, – COOH, – OH, – SH, – CO – NH –, пептидные связи и др.
В результате вокруг макромолекулы образуется сольватная или гидратная оболочка. Дополнительным фактором устойчивости является наличие заряда на молекуле белка, обусловленное ионогенными группами. Растворы ВМС самопроизвольно не осаждаются. Чтобы лишить высокомолекулярные частицы устойчивости, необходимо удалить гидратную оболочку и снять электрический заряд. Одним из методов осаждения белков является высаливание. ВЫСАЛИВАНИЕ:
Высаливание – это процесс осаждения белков с помощью
концентрированных растворов солей. Для высаливания чаще всего используют
соли Na2SO4, (NH4)2SO4, фосфаты.
Высаливание наиболее эффективно в ИЭТ белка, что и используется для
её определения. Учитывая механизм осаждающего действия электролитов и
других водоотнимающих средств, немецкий биохимик Кройт предложил
общую схему высаливания.
Большинство растворов ВМС, таких как агар-агар, желатина, а также коллоидные растворы типа гидроксида железа ( III) или кремниевые кислоты, способны при определенных условиях переходить в твердое состояние без видимого разделения фаз. Этот процесс носит название застудневание или желатинирование. А продукты, образовавшиеся в результате этих процессов,
называются студнями или гелями.
Студни или гели – это дисперсные системы, у которых частицы дисперсной фазы не движутся свободно, а связаны между собой, т.е. это золи, потерявшие агрегативную устойчивость, но сохранившие кинетическую устойчивость. Гели могут быть естественного и искусственного происхождения. К числу естественных относятся цитоплазма живых клеток, кожа, хрусталик глаза и т.д. Искусственные гели можно приготовить из желатины, агар-агара, каучука. Многие продукты питания представляют собой студни (хлеб, сыр, джемы и
т.д.).Студни под влиянием механических воздействий способны разжижаться, переходить в золи, а затем при хранении снова застудневать.. Тиксотропия – одно из доказательств того, что структурообразование в гелях происходит за счет межмолекулярных взаимодействий. Застудневание системы, происходящее самопроизвольно, не всегда является конечной стадией. Студни со временем меняют свои свойства, т.е. стареют. Происходит разделение студня на две фазы: уплотнённый гель и разведённый золь. Этот процесс называется синерезисом. Структурная сетка 11 геля стягивается и выжимает из себя растворитель. У белков синерезис зависит от рН и активнее всего в ИЭТ.
