
- •5. Катализ: гомогенный и гетерогенный. Энергетический профиль каталитической реакции.
- •6. Химическое равновесие. Обратимые и необратимые по направлению реакции. Константа химического равновесия. Прогнозирование смещения химического равновесия.
- •8. Классификация дисперсных систем: по степени дисперсности, по агрегатному состоянию фаз, по силе межмолекулярного взаимодействия между дисперсной фазой и дисперсионной средой.
- •10. Осмос, осмотическое давление. Закон Вант-Гоффа. Осмоляльность и осмолярность биологических жидкостей.
- •11. Понятие о коллоидных растворах. Методы получения и очистки коллоидных растворов. Строение мицеллы. Коагуляция, порог коагуляции.
- •12. Факторы устойчивости коллоидных растворов. Механизм возникновения электрического заряда коллоидной частицы. Мицелла. Ядро. Гранула.
- •13. Ионное произведение воды. Методы определения pH растворов. Индикаторы.
- •Методы определения значения pH
- •14. Протолитические реакции. Понятия о кислотах и основаниях. Амфолиты. Ионизация слабых кислот и оснований. Константа кислотности и основности.
- •15. Буферные системы: определение, классификация, уравнение Гендерсона-Гассельбаха. Механизм действия буферных систем. Зона буферного действия и буферная емкость
- •16. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая, белковая. Взаимодействие буферных систем организма человека.
- •17. Понятие о кислотно-основном состоянии организма. Виды нарушений кос и способы коррекции.
- •18. Типы окислительно-восстановительных реакций, протекающих в организме.
- •19. Физико-химические принципы транспорта электронов в электронотранспортной цепи митохондрий.
- •20. Классификация комплексных соединений, их строение. Представление о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины).
- •21. Типы изомерии органических соединений.
- •1.Структурная изомерия.
- •2.Пространственная изомерия.
- •22. Многоатомные спирты: этиленгликоль, глицерин, инозит. Их структура и функции. Образование сложных эфиров с неорганическими кислотами (нитроглицерин, фосфаты глицерина, инозита).
- •24. Аминофенолы: дофамин, норадреналин, адреналин. Понятие о биологической роли этих соединений и их производных.
- •26. Насыщенные дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая. Соли щавелевой кислоты- оксалаты.
- •27. Ненасыщенные дикарбоновые кислоты: фумаровая, малеиновая, их пространственное строение. Превращение янтарной кислоты в фумаровую как пример биологической реакции дегидрирования.
- •30. Классификация углеводов (моно-, олиго-, полисахариды). Моносахариды, их классификация (альдозы, кетозы).
- •31. Изомерия моносахаридов: стереоизомерия, цикло-оксо-таутомерия, а- и в-аномерия на примере глюкозы.
- •34. Дисахариды: классификация (редуцирующие- мальтоза, целлобиоза, лактоза) и нередуцирующие (сахароза, трегалоза). Строение, химические свойства: гидролиз, окисление редуцирующих сахаров.
- •35. Классификация полисахаридов (гомо- и гетерополисахариды). Примеры.
- •36. Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, декстран, целлюлоза. Структура, типы, химических связей, гидролиз.
- •37. Липиды: определение, классификация.
- •39. Простые (нейтральные липиды) – триглицериды. Номеклатура, состав, строение, их гидролиз.
- •40. Фосфатидная кислота. Её образование и гидролиз.
- •41.Фосфолипиды: фосфатидилсерины, фосфатидилэтаноламины и фосфатидилхолин (лецитины) – реакция гидролиза.
- •42.Стероиды: структура холестерина, желчных кислот.
- •43.Липидный состав мембран. Амфифильная природа мембранных липидов.
- •44.Классификация нуклеиновых кислот.
- •45.Пиримидиновые и пуриновые основания. Ароматические свойства. Лактим-тактамная таутометрия.
- •46.Нуклеозиды: номенклатура, строение, гидролиз.
- •47. Нуклеотиды: номенклатура, строение, гидролиз
- •48.Первичная структура нуклеиновых кислот: химический состав рнк и днк, типы химических связей.
- •49.Вторичная структура днк. Роль водородных связей в формировании вторичной структуры. Комплиментарные пары. Третичная структура днк.
- •50.Природные аминокислоты.Номенклатура и стереоизомерия.
- •51.Классификация аминокислот по: строению радикала, кислотно-основным свойствам.
- •52.Кислотно-основные свойства аминокислот, биполярная структура, изоэлектрическая точка.
- •53.Химические свойства α-аминокислот как гетерофункциональных соединений: реакции этерификации, ацилирования, алкилирования, образование иминов, реакция комплексообразования.
- •5,4. Биологические важные реакции α-аминокислот
- •55. Первичная структура белка. Строение пептидной группы. Гидролиз пептидов.
- •56. Вторичная, третичная, четвертичная структуры белка. Химические связи, участвующие в образовании структур белка. Биологическая роль структурной организации белковых молекул.
- •59. Миоглобин и гемоглобин: строение и функции.
- •60. Конформационные изменения и кооперативные взаимодействия субъединиц гемоглобина (кооперативный эффект). Эффект Бора. Роль 2,3 – бисфосфоглицерата.
- •61. Особенности ферментов как белковых катализаторов. Активный центр, кофакторы и коферменты. Механизм действия ферментов. Этапы ферментативного катализа.
- •62. Классификация и номенклатура ферментов.
- •64. Зависимость активности ферментов от температуры и pH среды. Единицы активности ферментов.
- •65. Специфичность действия ферментов.
- •66. Аллостерические ферменты: структура, аллостерический и регуляторный центры. Гомо- и гетеротропные эффекты.
- •67. Ингибирование активности ферментов: обратимое, необратимое, конкурентное, неконкурентное.
- •I. Обратимое ингибирование
- •68. Индукция и репрессия синтеза ферментов. Компартментация ферментов. (Нихуя не нашел толком. Говно, а не ответ)
- •69. Виды регуляции ферементов: ассоциация-диссоциация.
- •70. Ковалентная модификация ферментов: ограниченный протеолиз проферментов, фосфорилирование и дефосфорилирование.
- •71. Применение ферментов и их ингибиторов в медицине (диагностика, лечение). Энзимопатии.
24. Аминофенолы: дофамин, норадреналин, адреналин. Понятие о биологической роли этих соединений и их производных.
Дофами́н — нейромедиатор, вырабатываемый в мозге людей и животных. Также гормон, вырабатываемый мозговым веществом надпочечников и другими тканями (например, почками), но в подкорку мозга из крови этот гормон почти не проникает. По химической структуре дофамин относят к катехоламинам. Дофамин является биохимическим предшественником норадреналина (и адреналина).
Дофамин является одним из химических факторов внутреннего подкрепления (ФВП) и служит важной частью «системы поощрения» мозга, поскольку вызывает чувство удовольствия (или удовлетворения), чем влияет на процессы мотивации и обучени. Дофамин естественным образом вырабатывается в больших количествах во время позитивного, по субъективному представлению человека, опыта — к примеру, секса, приёма вкусной пищи, приятных телесных ощущений, а также наркотиков. Нейробиологические эксперименты показали, что даже воспоминания о позитивном поощрении могут увеличить уровень дофамина, поэтому данный нейромедиатор используется мозгом для оценки и мотивации, закрепляя важные для выживания и продолжения рода действия.
Дофамин играет немаловажную роль в обеспечении когнитивной деятельности. Активация дофаминергической передачи необходима при процессах переключения внимания человека с одного этапа когнитивной деятельности на другой. Таким образом, недостаточность дофаминергической передачи приводит к повышенной инертности больного, которая клинически проявляется замедленностью когнитивных процессов (брадифрения) и персеверациями. Данные нарушения являются наиболее типичными когнитивными симптомами болезней с дофаминергической недостаточностью — например,болезни Паркинсона.
НОРАДРЕНАЛИН, соединение из группы катехоламинов, нейрогормонов. Образуется в нервной системе, где служит медиатором (передатчиком) проведения нервного импульса, и в надпочечниках. В качестве гормона оказывает сильное сосудосуживающее действие, в связи с чем секреция норадреналина играет ключевую роль в механизмах регуляции кровотока.
Действие норадреналина связано с преимущественным влиянием на α-адренорецепторы. Норадреналин отличается от адреналина гораздо более сильным сосудосуживающим и прессорным действием, значительно меньшим стимулирующим влиянием на сокращения сердца, слабым действием на гладкую мускулатуру бронхов и кишечника, слабым влиянием на обмен веществ (отсутствием выраженного гипергликемического, липолитического и общего катаболического эффекта). Норадреналин в меньшей степени повышает потребность миокарда и других тканей в кислороде, чем адреналин.
Норадреналин принимает участие в регуляции артериального давления и периферического сосудистого сопротивления. Например, при переходе из лежачего положения в стоячее или сидячее уровень норадреналина в плазме крови в норме уже через минуту возрастает в несколько раз.
Норадреналин принимает участие в реализации реакций типа «бей или беги», но в меньшей степени, чем адреналин. Уровень норадреналина в крови повышается при стрессовых состояниях, шоке, травмах, кровопотерях, ожогах, при тревоге, страхе, нервном напряжении.
Кардиотропное действие норадреналина связано со стимулирующим его влиянием на β-адренорецепторы сердца, однако β-адреностимулирующее действие маскируется рефлекторной брадикардией и повышением тонуса блуждающего нерва, вызванными повышением артериального давления.
Норадреналин вызывает увеличение сердечного выброса. Вследствие повышения артериального давления возрастает перфузионное давление в коронарных и мозговых артериях. Вместе с тем, значительно возрастает периферическое сосудистое сопротивление и центральное венозное давление.
Адреналин (эпинефрин) (L-1(3,4-Диоксифенил)-2-метиламиноэтанол) — основной гормон мозгового вещества надпочечников, а также нейромедиатор. По химическому строению являетсякатехоламином. Адреналин содержится в разных органах и тканях, в значительных количествах образуется в хромаффинной ткани, особенно в мозговом веществе надпочечников.
На артериальное давление адреналин оказывает сложное влияние. В его действии выделяют 4 фазы (см схему):
Сердечная, связанная с возбуждением β1 адренорецепторов и проявляющаяся повышением систолического артериального давления из-за увеличения сердечного выброса;
Вагусная, связанная со стимуляцией барорецепторов дуги аорты и сонного клубочка повышенным систолическим выбросом. Это приводит к активации дорсального ядра блуждающего нерва и включает барорецепторный депрессорный рефлекс. Фаза характеризуется замедлением частоты сердечных сокращений (рефлекторная брадикардия) и временным прекращением подъема артериального давления;
Сосудистая прессорная, при которой периферические вазопрессорные эффекты адреналина «побеждают» вагусную фазу. Фаза связана со стимуляцией α1 и α2 адренорецепторов и проявляется дальнейшим повышением артериального давления. Следует отметить, что адреналин, возбуждая β1 адренорецепторы юкстагломерулярного аппарата нефронов почек, способствует повышению секреции ренина, активируя ренин-ангиотензин-альдостероновую систему, также ответственную за повышение артериального давления.
Сосудистая депрессорная, зависящая от возбуждения β2 адренорецепторов сосудов и сопровождающаяся снижением артериального давления. Эти рецепторы дольше всех держат ответ на адреналин.
На гладкие мышцы адреналин оказывает разнонаправленное действие, зависящее от представленности в них разных типов адренорецепторов. За счёт стимуляции β2 адренорецепторов адреналин вызывает расслабление гладкой мускулатуры бронхов и кишечника, а, возбуждая α1 адренорецепторы радиальной мышцы радужной оболочки, адреналин расширяет зрачок.
Длительная стимуляция бета2-адренорецепторов сопровождается усилением выведения K+ из клетки и может привести к гиперкалиемии.
Адреналин — катаболический гормон и влияет практически на все виды обмена веществ. Под его влиянием происходит повышение содержания глюкозы в крови и усиление тканевого обмена. Будучи контринсулярным гормоном и воздействуя на β2 адренорецепторы тканей и печени, адреналин усиливает глюконеогенез и гликогенолиз, тормозит синтез гликогена в печени и скелетных мышцах, усиливает захват и утилизацию глюкозы тканями, повышая активность гликолитических ферментов. Также адреналин усиливает липолиз (распад жиров) и тормозит синтез жиров. Это обеспечивается его воздействием на β1 адренорецепторы жировой ткани. В высоких концентрациях адреналин усиливает катаболизм белков.
Имитируя эффекты стимуляции «трофических» симпатических нервных волокон, адреналин в умеренных концентрациях, не оказывающих чрезмерного катаболического воздействия, оказывает трофическое действие на миокард и скелетные мышцы. Адреналин улучшает функциональную способность скелетных мышц (особенно при утомлении). При продолжительном воздействии умеренных концентраций адреналина отмечается увеличение размеров (функциональная гипертрофия) миокарда и скелетных мышц. Предположительно этот эффект является одним из механизмов адаптации организма к длительному хроническому стрессу и повышенным физическим нагрузкам. Вместе с тем длительное воздействие высоких концентраций адреналина приводит к усиленному белковому катаболизму, уменьшению мышечной массы и силы, похуданию и истощению. Это объясняет исхудание и истощение при дистрессе (стрессе, превышающем адаптационные возможности организма).
Адреналин оказывает стимулирующее воздействие на ЦНС, хотя и слабо проникает через гемато-энцефалический барьер. Он повышает уровень бодрствования, психическую энергию и активность, вызывает психическую мобилизацию, реакцию ориентировки и ощущение тревоги, беспокойства или напряжения. Адреналин генерируется при пограничных ситуациях.
Адреналин возбуждает область гипоталамуса, ответственную за синтез кортикотропин рилизинг гормона, активируя гипоталамо-гипофизарно-надпочечниковую систему и синтез адренокортикотропного гормона. Возникающее при этом повышение концентрации кортизола в крови усиливает действие адреналина на ткани и повышает устойчивость организма к стрессу и шоку.
Адреналин также оказывает выраженное противоаллергическое и противовоспалительное действие, тормозит высвобождение гистамина, серотонина, кининов, простагландинов, лейкотриенов и других медиаторов аллергии и воспаления из тучных клеток (мембраностабилизирующее действие), возбуждая находящиеся на них β2-адренорецепторы, понижает чувствительность тканей к этим веществам. Это, а также стимуляция β2-адренорецепторов бронхиол, устраняет их спазм и предотвращает развитие отека слизистой оболочки. Адреналин вызывает повышение числа лейкоцитов в крови, частично за счёт выхода лейкоцитов из депо в селезёнке, частично за счёт перераспределения форменных элементов крови при спазме сосудов, частично за счёт выхода не полностью зрелых лейкоцитов из костномозгового депо. Одним из физиологических механизмов ограничения воспалительных и аллергических реакций является повышение секреции адреналина мозговым слоем надпочечников, происходящее при многих острых инфекциях, воспалительных процессах, аллергических реакциях. Противоаллергическое действие адреналина связано в том числе с его влиянием на синтез кортизола.
При интракавернозном введении уменьшает кровенаполнение пещеристых тел, действуя через α-адренорецепторы.
На свертывающую систему крови адреналин оказывает стимулирующее действие. Он повышает число и функциональную активность тромбоцитов, что, наряду со спазмом мелких капилляров, обуславливает гемостатическое (кровоостанавливающее) действие адреналина. Одним из физиологических механизмов, способствующих гемостазу, является повышение концентрации адреналина в крови при кровопотере.
25. Монокарбоновые кислоты: химические свойства с участием карбоксильной группы (образование солей, сложных эфиров, амидов, ангидридов). Функциональные производные карбоновых кислот тиоэфиры (АцетилКоа, АцилКоа).
Одноосновные карбоновые кислоты (монокарбоновые кислоты) – это карбоновые кислоты, содержащие ровно одну карбоксильную группу –COOH.
Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными металлами, основными оксидами, основаниями и солями слабых кислот:
2RCOOH + Мg → (RCOO)2Mg + Н2,
2RCOOH + СаО → (RCOO)2Ca + Н2О,2
RCOOH + NaOH → RCOONa + Н2О,
RCOOH + NaHCO3→ RCOONa + Н2О + СО2↑.
Карбоновые кислоты — слабые, поэтому сильные минеральные кислоты вытесняют их из соответствующих солей:
CH3COONa + HCl → СН3СООН + NaCl.
Соли карбоновых кислот в водных растворах гидролизованы:
СН3СООК
+ Н2О
СН3СООН
+ КОН.
Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:
2R-CO-OH + Р2О5 → (R-CO-)2O + 2НРО3.
Сложные эфиры образуются при нагревании кислоты со спиртом в присутствии серной кислоты (обратимая реакция этерификации):
Реакции хлорангидридов карбоновых кислот с аммиаком приводят к образованию амидов:
СН3-СО-Сl + CН3 → СН3-СО-CН2 + HCl.
Кроме того, амиды могут быть получены при нагревании аммонийных солей карбоновых кислот:
|
t° |
|
CH3-COONH4 |
→ |
CH3-CO-NH2 + Н2О |
Продукты взаимодействия карбоновых кислот со спиртами или фенолами представляют собой сложные эфиры. Например:
Реакция образования сложного эфира из кислоты и спирта (или фенола) называется реакцией этерификации. Она катализируется ионами водорода и поэтому ускоряется в присутствий минеральных кислот.
Сложные тиоэфиры — органические соединения, содержащие функциональную группу C-S-CO-C и являющиеся сложными эфирами тиолов и карбоновых кислот. Сложные тиоэфиры играют важную роль в биохимических процессах, наиболее известный представитель этого класса — ацетил-CoA.
Ацетилкофермент А, ацетил КоА— ацетилированная форма кофермента А, образующаяся в результате окислительного декарбоксилирования пировиноградной кислоты и при окислении жирных кислот; играет важную роль в цикле трикарбоновых кислот), а также участвует в процессах синтеза жирных кислот, стеринов, ацетилхолина и т. д.
Ацетил-КоA - СН3-CO-S-КоA.
Анаэробное окисление пировиноградной или альфа-кетоглутаровой кислот приводит к образованию высокоэнергетических метаболитов - ацетил-КоA или сукцинил-КоA соответственно.
Ацил-Коа- макроэргический продукт конденсации коэнзима А с карбоновой кислотой; в форме ацил-КоА карбоновые кислоты участвуют в обменных реакциях организма.