Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Khimia_1-18 (Автосохраненный).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.03 Mб
Скачать

1. Термодинамические системы: определение, классификация: систем (изолированные, закрытые, открытые) и процессов (изотермические, изобарные, изохорные). Стандартное состояние. Основные понятия термодинамики: внутренняя энергия, работа, теплота.

Термодинамические системы - совокупности физических тел, которые могут взаимодействовать энергетически между собой и с другими телами, а также обмениваться с ними веществом. Системы:

а) Система открытая, если возможен энергообмен и обмен веществом.

б) Система закрытая, если энергообмен возможен, а обмен веществом невозможен.

в) Система изолированная, если невозможен какой-либо обмен системы с окружающей средой

Процессы:

а) Изотермический процесс — происходящий при постоянной температуре б) Изобарный процесс — происходящий при постоянном давлении в) Изохорный процесс — происходящий при постоянном объёме

Стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы — это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа, подразумевая наличие свойств идеального газа.

Для беспримесной фазы, смеси или растворителя в жидком или твёрдом агрегатном состоянии — это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора — это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества — это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура, хотя часто говорят о стандартной температуре, которая равна 25 °C (298,15 К).

Внутренняя энергия – это суммарная энергия всех составных частей системы и их взаимодействий.

работа — энергия предающаяся за счёт упорядоченного поступательного движения потока элементов системы или окружающей среды

теплота-энергия передающаяся за счёт хаотического движения элементов системы и окружающей среды. Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется количеством теплоты или просто теплотой

2. Первое начало термодинамики. Энтальпия. Стандартная энтальпия образования вещества, стандартная энтальпия сгорания вещества. Стандартная энтальпия реакции. Применение первого начала термодинамики к биосистемам.

Первое начало термодинамики —закон сохранения энергии для термодинамических систем.

количество теплоты, полученное системой, идет на изменение ее внутренней энергии и на совершение работы над внешними телами:

Q = ΔU + A.

В изохорном процессе газ работы не совершает, и ΔU = Q. В изобарном процессе A = p (V2 – V1). В изотермическом процессе ΔU = 0, и A = Q; вся теплота, переданная телу, идет на работу над внешними телами. Графически работа равна площади под кривой процесса на плоскости p, V. - первое начало термодинамики для изохорного процесса - первое начало термодинамики для изобарного проце - первое начало термодинамики для изотермического процесса

энтальпия — это та энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении

стандартной теплотой образования -тепловой эффект реакции образования одного моль вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H2(г) = CH4(г) + 74.9 кДж/моль.

Стандартная энтальпия образования обозначается  ΔHfO. перечеркнутый кружок, то, что величина относится к стандартному состоянию вещества.

Стандартная энтальпия сгорания — ΔHгоро, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Первое начало термодинамики для биологических систем: Поступление пищи обеспечивает энергию, которая используется для выполнения различных функций организма или сохраняется для последующего использования. Энергия высвобождается из пищевых продуктов в процессе их биологического окисления, которое является многоступенчатым процессом.  Энергия пищевых продуктов используется в клетках первоначально для синтеза макроэргических соединений  - например, аденозинтрифосфорной кислоты (ATФ). ATФ, в свою очередь, может использоваться как источник энергии почти для всех процессов в клетке.  Пищевые вещества окисляются вплоть до конечных продуктов, которые выделяются из организма. Например, углеводы окисляются в организме до углекислого газа и воды. Такие же конечные продукты образуются при сжигании углеводов в калориметре: C6H12O6 + 6O2 = 6CO2 + 6H2O Величина энергии, высвобождаемой из каждого грамма глюкозы в этой реакции, составляет 4,1 килокалории (кКал). Столько же энергии, образуется при окислении глюкозы в живых клетках, несмотря на то, что процесс окисления в них является многоступенчатым процессом и происходит в несколько стадий. Этот вывод основан на принципе Гесса, который является следствием первого закона термодинамики: тепловой эффект многоступенчатого химического процесса не зависит от его промежуточных этапов, а определяется лишь начальным и конечным состояниями системы.  Таким образом, исследования с помощью калориметра показали среднюю величину физиологически доступной энергии, которая содержится в 1грамме трех пищевых продуктов (в килокалориях): углеводы - 4,1; белки - 4,1; жиры - 9,3.  С другой стороны, в конечном итоге вся энергия, поступившая в организм, превращается в теплоту. Также при образовании АТФ лишь часть энергии запасается, большая - рассеивается в форме тепла. При использовании энергии ATФ функциональными системами организма большая часть этой энергии также переходит в тепловую.  Оставшаяся часть энергии в клетках идёт на выполнении ими функции, однако, в конечном счёте, превращается в теплоту. Например, энергия, используемая мышечными клетками, расходуется на преодоление вязкости мышцы и других тканей. Вязкое перемещение вызывает трение, что приводит к образованию тепла.

3. Второе начало термодинамики. Энтропия. Энергия Гиббса. Прогнозирование направления самопроизвольно протекающих процессов в изолированной и закрытой системах. Примеры экзегронических и эндергонических процессов, протекающих в организме. Принцип энергетического сопряжения.

Второе начало гласит- невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому. Более строго, невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела, менее нагретого, к телу, более нагретому.

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение общего количества тепла   к величине абсолютной температуры :

Энергия Гиббса

критерий самопроизвольности процессов в открытых и закрытых системах вводится– энергия Гиббса

Энергия Гиббса определяется через энтальпию Н и энтропию S с помощью соотношений:

G = H – S,

ΔG = ΔH – ΔS.

Стр 6

Экзергонический процесс - самопроизвольно протекающий процесс, сопровождающийся уменьшением свободной энергии системы.

Процесс окисления глюкозы дикислородом, сопровождается уменьшением энергии Гиббса и является ярким примером экзергонической реакции в организме человека. Так как он (этот процесс) происходит при физической нагрузке (различной работе совершаемой человеком).

Эндергонический процесс - процесс, протекающий в системе только при поступлении свободной энергии извне.

В живых системах эндергонические процессы сопряжены с экзергоническими. В частности, процессы катаболизма (распад или окисление молекул) обычно являются экзергоническими процессами, а процессы анаболизма - эндергоническими процессами. Таким образом метаболизм есть совокупность взаимодействующих экзергонических и эндергонических процессов. Экзергонические процессы передают свободную энергию для осуществления эндергонических процессов (синтез, активный транспорт, неспецифические эффекты возбуждения, специфические эффекты возбуждения и др.) посредством общего высокоэнергетического соединения. В живых клетках главным таким высокоэнергетическим продуктом является аденозинтрифосфат (АТФ).

В биологической химии важную роль играет принцип энергетического сопряжения, заключающийся в том, что энергия, необходимая для протекания эндергонической реакции, поступает за счет осуществления экзергонической реакции, причем в этих двух реакциях присутствует общее вещество, называемое интермедиатом.

Наиболее распространенной экзергонической реакцией, вступающей в энергетическое сопряжение в условиях организма, является гидролиз АТФ, сопровождающийся переносом остатка фосфорной кислоты на другой субстрат. Например, при образовании сложного эфира глюкозы и фосфорной кислоты одновременно протекают 2 реакции:

АТФ + Н2О → АДФ + Н3РО4; D = -29,2 кДж

Суммарное уравнение данного процесса можно представить следующим образом:

Глюкоза + АТФ → Глюкозо-6-фосфат + АДФ

Изменение энергии Гиббса будет равно DG0 = –29,2 + 13,1 = –16,1 кДж. Образование глюкозо-6-фосфата из глюкозы возможно, следовательно, только в результате энергетического сопряжения с экзергонической реакцией, сопровождающейся уменьшением энергии Гиббса. Интермедиатом в этой реакции является фосфорная кислота.

4. Зависимость скорости реакции от концентрации. Молекулярность элементарного акта реакции. Порядок реакции. Кинетические уравнения реакций первого и второго порядков. Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции и его особенности для биохимических процессов. Энергия активации.

При повышении концентрации хотя бы одного из реагирующих веществ, скорость химической реакции возрастает в соответствии с кинетическим уравнением. Рассмотрим общее уравнение реакции: aA +bB = cC + dD. Для данной реакции кинетическое уравнение принимает вид:

Молекулярность элементарной реакции — число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.

Мономолекулярные реакции — реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):

Бимолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):

Тримолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении трех частиц:

Порядок реакции по данному веществу — показатель степени при концентрации этого вещества в кинетическом уравнении реакции.

Реакции нулевого порядка

Для реакций нулевого порядка кинетическое уравнение имеет следующий вид:

Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ.

Кинетическое уравнение реакции первого порядка:

Реакции второго порядка:

С повышением температуры увеличивается кинетическая энергия частиц и число активных частиц возрастает, следовательно, химические реакции при высоких температурах протекают быстрее, чем при низких температурах. Зависимость скорости реакции от температуры определяется правилом Вант - Гоффа :

Правило Вант - Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции.

Энергия активации - минимальное количество энергии, которое требуется сообщить системе (дж\моль), чтобы произошла реакция.

В химической модели, известной как Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

- Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

- Молекулы должны обладать необходимой энергией (энергией активации). В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся.

- Молекулы должны быть правильно ориентированы относительно друг друга.

5. Катализ: гомогенный и гетерогенный. Энергетический профиль каталитической реакции.

Катализ - изменение скорости химической реакции при воздействии веществ (катализаторов), которые участвуют в реакции, но не входят в состав продуктов. Катализатор регенерируется после каждого цикла превращения реагентов в продукты.

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO

H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

1) Диффузия реагирующих веществ к поверхности твердого вещества

2) Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их

3) Химическая реакция между реагирующими молекулами

4) Десорбция продуктов с поверхности катализатора

5) Диффузия продукта с поверхности катализатора в общий поток

Примером гетерогенного катализа является окисление  SO2 в SO3 на катализаторе  V2O5 при производстве серной кислоты (контактный метод).

Энергетический профиль кат.реакции

6. Химическое равновесие. Обратимые и необратимые по направлению реакции. Константа химического равновесия. Прогнозирование смещения химического равновесия.

Химическое равновесие — состояние химической системы, в которой протекает одна или несколько химических реакций, причём скорости в каждой паре прямой-обратной реакции равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

А2 + В2 ⇄ 2AB

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации

Факторы, влияющие на химическое равновесие:

1) температура

При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении - в сторону экзотермической (выделение) реакции.

CaCO3=CaO+CO2 -Q t↑ →, t↓ ←

N2+3H2↔2NH3 +Q t↑ ←, t↓ →

2) давление

При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении - в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся.

CaCO3=CaO+CO2 P↑ ←, P↓ →

1моль=1моль+1моль

3) концентрация исходных веществ и продуктов реакции

При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при повышении концентрации продуктов реакции - в сторону исходных веществ.

S2+2O2=2SO2 [S],[O]↑ →, [SO2]↑ ←

Катализаторы не влияют на смещение химического равновесия

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми.

Примером такой реакции может служить разложение хлората калия (бертолетовой соли) при нагревании:

2KClO₃= 2KCl + 3O₂↑

Константа химического равновесия

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации Сi, парциальные давления Pi или мольные доли Xi реагирующих веществ. Для некоторой реакции

соответствующие константы равновесия выражаются следующим образом:

(1) (2) (3)

7. Классификация растворов: по степени дисперсности, по степени насыщенности. Коллигативные свойства растворов: закон Рауля, понижение температуры замерзания раствора, повышение температуры кипения раствора.

Насыщенность: По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, называется пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблюдается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор становится насыщенным.

Дисперсность: 1) Грубодисперсные - размер частиц - 10⁻⁷ - 10⁻⁵м;

2) Коллоидно-дисперсные - размер частиц- 10⁻⁹ - 10⁻⁷ м;

3) Молекулярно-дисперсные и ионно-дисперсные (истинные растворы) - размер частиц меньше 10⁻⁹ м.

Коллигативные свойства растворов —зависят лишь от количества кинетических единиц и от их теплового движения.

1 Закон Рауля:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p0 · χр-ль, где

p — давление пара над раствором, Па;

p0 — давление пара над чистым растворителем;

χр-ль — мольная доля растворителя.

2 Закон Рауля: повышение температуры кипения раствора по сравнению с температурой кипения растворителя, а равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора:

ΔTкип/зам= Kкип/зам · mв-ва, где

Kэб/кр —константы, характерные для данного растворителя;

mв-ва — моляльность вещества в растворе.

Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора

Понижение температуры кристаллизации бесконечно разбавленных растворов не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора.